
DOCTORAL DISSERTATION

Improving and Facilitating
the Placement of Interactive
Elements on User Interfaces

Doctoral dissertation submitted to obtain the degree of
Doctor of Science: Information Technology, to be defended by

Promoter: Prof. Dr Kris Luyten | UHasselt

Co-promoter: Prof. Dr Andrew Vande Moere | KU Leuven

2018 | Faculty of Sciences

D/2018/2451/41

Kashyap Todi

1

Acknowledgements

If you told my school teachers, ”Kashyap has received the degree of “Doc-
tor of Science”, some (or several) of them would be a tad bit shocked.
However, I managed to pave my path from being a notorious school
kid to a serious researcher over the course of years. This would have
undeniably not been possible as a solo-mission: several people have
supported, guided, and given me company along the way. I’d like to
thank some of them here, and acknowledge their contribution.

Firstly, I want to thank Prof. Dr. Kris Luyten, my promoter, for his
guidance and support over the entire course of my doctoral research.
Kris has been a great mentor and advisor to me. He gave me enough
room to explore different ideas, and did not restrict me to one path.
Kris always had great advice and suggestions for tackling different
research problems—be it for adding flesh to a topic or coming up with
fun titles for a project. He also made sure to be available and prompt in
responding with feedback: there have been so many occasions where
I sent him an e-mail in the middle of the night, expecting a response in
a day or two, and yet, found a reply in my inbox at around 2 A.M.

Second, I want to thank Prof. Dr. Antti Oulasvirta, who is one
of the members of my jury, and also advised me during two sum-

2 Acknowledgements

mer internships over the course of my research. These internships, at
the User Interface Group, were very enriching experiences—Antti is a
great mentor and collaborator, and I have learnt a lot from him over
the years. The rest of group members also contributed in making my
stays pleasant and insightful. I look forward to continuing my path, in
the immediate future, as a postdoctoral researcher, in his group.

Next, I want to thank Prof. Dr. Andrew Vande Moere, my co-
promoter, for his involvement and advise during my PhD research.
Andrew provided me with good advise, and suggestions, at crucial
points. I visited his group in KU Leuven a few times during the early
parts of my PhD, and we had some fruitful discussions. He also pro-
vided me with critical reflections on my thesis work when needed, and
gave me several useful comments over the course of years. During the
final stretch, his comments on my thesis drafts made me think deeper
about my work, and helped the dissertation reach its final state. Mov-
ing on, I would like to thank all the other members of my jury: Prof. Dr.
Karin Coninx, Prof. Dr. Jean Vanderdonckt, Dr. Emmanuel Pietriga,
and Prof. Dr. Frank Van Reeth: Thank you all for your valuable time
and constructive feedback in the final stages, which have helped me to
improve this dissertation. I would also like to thank the chairman of
my jury, Prof. Dr. Marc Gyssens.

This thesis would not have been possible without some amazing
collaborators and colleagues, and I would like to thank them as well.
I would like to especially mention Prof. Dr. Raf Ramakers, who I also
shared an office with, for being a great collaborator and leading the Pa-
perPulse project with such enthusiasm. I collaborated with Dr. Daryl
Weir and Dr. Jussi Jokinen during my two internships at the User In-

Acknowledgements 3

terfaces group, and would like to thank them as well. I also want to
thank Prof. Dr. Johannes Schöning, who worked with me on Bin-
Put; Johannes was always keen on exploring new ideas, and added
energy to our conversations. Several other people assisted me during
my research, and I would like to thank all of them. All my colleagues
at EDM have made it a pleasant and inviting place to work in, rich
with interactions—be it lunch-time conversations, coffee-machine en-
counters, or occasional bar visits. I would like to explicitly mention
Jens Bruhlmans for the excessive conversations about music or cryp-
tocurrencies; Dr. Gustavo Rovelo for things related to Mexican food
(and Tequila); my other officemates—Dr. Florian Heller, Dr. Davy
Vanacken, and Dr. Pavel Samsonav; and Ingrid Konings, Hilde Wij-
nen, and Roger Claes for their assistance with administrative issues.
I also thank all other colleagues, who I have not mentioned by name
here, but have contributed in their own ways.

I would also like to thank my parents and family for supporting
and encouraging me all the way, and in every move I have made.
Without them, I would have never managed to embark on this jour-
ney in the first place. I want to especially thank some of my former
flatmates in Hasselt—Ben, Lieselotte, Karolien, Mattias, Eveline, Bert,
Brecht, Jolijn, and Anneleen—they made Belgium a second home for
me, and I can consider them to be my alternate family now. All the
chill-out evenings on the living room couch, parties, and (occasional)
hangover-afternoons, gave me renewed energy to go back to my desk
and continue working. I would also like to thank all the other friends
I have made along the way, who have made life outside of work a
pleasant experience.

4 Acknowledgements

5

Abstract

A user interface is the primary mean by which a user interacts with
a computer. Interactive elements, placed on an interface, define the
scope of interactions afforded to users. This thesis investigates place-
ment issues central to the design of user interfaces. The primary goal is
support the construction of user interfaces by improving or facilitating
the placement of interactive elements on (1) graphical user interfaces
(GUIs), and (2) post-WIMP user interfaces.

GUIs are the most-commonly used method for interacting with
computers. They consists of interactive elements organised in a vi-
sual interface layout. Improving the construction of interface layouts
positively impacts user performance and perception of the interface.
However, objectively improving the placement of elements is non-
trivial. The first part of my thesis addresses challenges towards im-
proving placement on GUI layouts. To this end, I make two main con-
tributions. In Sketchplore, I investigate design-time improvements by
enabling interface designers to sketch and explore layouts using an in-
teractive optimiser. In Familiarisation, I discuss a use-time approach
to improve placement for individual users by applying principles of
familiarity.

6 Abstract

Post-WIMP interfaces go beyond the GUI paradigm, and open up
new interaction possibilities. They support a larger set of interactive
elements, such as sensors and actuators. Due to the added technical
complexity, it can be challenging to place interactive elements onto
such interfaces. The second part of this thesis focuses on facilitating
the placement of interactivity onto post-WIMP interfaces, and makes
two contributions towards addressing placement challenges. I inves-
tigate the placement of interactive electronic elements onto physical
interfaces. I present PaperPulse as a tool for non-expert to place elec-
tronics onto paper interfaces, and extend the discussion to other phys-
ical interfaces such as wearables and smart home interfaces. In BinPut,
I discuss the placement of standard input controls onto a diverse set
of interfaces, and present a universal technique that can be applied to
different types of input and devices.

The concepts and principles discussed in the thesis contribute to-
wards addressing placement problems central to the construction of
user interfaces. They can result in design interfaces that are perfor-
mant, and that support a wide range of interactions. Quantitative and
qualitative evaluations of the resulting tools and techniques provide
evidence for the approaches presented in this dissertation.

7

Scientific Contributions

The contents of this thesis are a product of a set of academic publica-
tions presented at venues for dissemination of results in the field of
HCI. The list of publications that contribute to this thesis are as fol-
lows:

1. KASHYAP TODI, DARYL WEIR, and ANTTI OULASVIRTA.
Sketchplore: Sketch and explore layout designs with an opti-
miser. In Proceedings of the 2016 CHI Conference Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’16, pages 3780–
3783. ACM, New York, NY, USA, 2016. ISBN 978-1-4503-4082-3.
doi: 10.1145/2851581.2890236

2. KASHYAP TODI, DARYL WEIR, and ANTTI OULASVIRTA.
Sketchplorer: A mixed-initiative tool for sketching and exploring
interactive layout designs. In Proceedings of the CHI ’17 Workshop
on Mixed-Initiative Creative Interfaces. 2017

3. KASHYAP TODI, JUSSI JOKINEN, KRIS LUYTEN, and ANTTI

OULASVIRTA. Familiarisation: Restructuring layouts with visual
learning models. In Proceedings of the 2018 ACM Conference on In-
teractive User Interfaces, IUI ’18. ACM, New York, NY, USA, 2018

8 Scientific Contributions

4. RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-
pulse: An integrated approach for embedding electronics in pa-
per designs. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, pages 2457–2466.
ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3145-6. doi:
10.1145/2702123.2702487

5. KASHYAP TODI and KRIS LUYTEN. Suit up!: Enabling eyes-free
interactions on jacket buttons. In Proceedings of the Extended Ab-
stracts of the 32Nd Annual ACM Conference on Human Factors in
Computing Systems, CHI EA ’14, pages 1549–1554. ACM, New
York, NY, USA, 2014. ISBN 978-1-4503-2474-8. doi: 10.1145/
2559206.2581155

6. KASHYAP TODI and KRIS LUYTEN. Suit up!: Inconspicuous in-
teractions on jacket buttons. In Proceedings of the 2014 CHI Con-
ference Workshop on Inconspicuous Interactions, CHI EA ’14. ACM,
New York, NY, USA, 2014

7. KASHYAP TODI, KRIS LUYTEN, and ANDREW VANDE MOERE.
Making smart homes personal: Fabrication and customisation of
home interfaces. In Proceedings of the CHI ’15 Workshop on Smart
for Life: Designing Smart Home Technologies that Evolve with Users,
CHI EA ’15. 2015

8. KASHYAP TODI, DONALD DEGRAEN, BRENT BERGHMANS,
AXEL FAES, MATTHIJS KAMINSKI, and KRIS LUYTEN. Purpose-
centric appropriation of everyday objects as game controllers. In
Proceedings of the CHI ’16 Extended Abstracts, CHI EA ’16, pages
2744–2750. ACM, New York, NY, USA, 2016. ISBN 978-1-4503-
4082-3. doi: 10.1145/2851581.2892448

Scientific Contributions 9

In addition to this, I have also presented some of my work as inter-
active exhibits and demos:

1. KASHYAP TODI, DARYL WEIR, and ANTTI OULASVIRTA.
Sketchplore: Sketch and explore layout designs with an opti-
miser. In Proceedings of the 2016 CHI Conference Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’16, pages 3780–
3783. ACM, New York, NY, USA, 2016. ISBN 978-1-4503-4082-3.
doi: 10.1145/2851581.2890236

2. RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-
pulse: An integrated approach to fabricating interactive paper. In
Proceedings of the 33rd Annual ACM Conference Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’15, pages 267–
270. ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3146-3.
doi: 10.1145/2702613.2725430

3. RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-
pulse: An integrated approach for embedding electronics in pa-
per designs. In SIGGRAPH 2015: Studio, SIGGRAPH ’15, pages
3:1–3:1. ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3637-
6. doi: 10.1145/2785585.2792694

4. BRENT BERGHMANS, AXEL FAES, MATTHIJS KAMINSKI, and
KASHYAP TODI. Household survival: Immersive room-sized
gaming using everyday objects as weapons. In Proceedings of
the 2016 CHI Conference Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’16, pages 168–171. ACM, New York,
NY, USA, 2016. ISBN 978-1-4503-4082-3. doi: 10.1145/2851581.
2890372

10 Scientific Contributions

11

Collaboration
Acknowledgements

While this dissertation has one author, the research conducted over
the course of my thesis was completed in collaboration with other re-
searchers. Several colleagues have made valuable contributions, and
offered guidance and advice, without which the success of the various
projects would not have been possible. My research trajectory was also
heavily influenced by opportunities in the form of summer schools, in-
ternships, and collaborations. Here, I would like to acknowledge con-
tributions of individuals to research presented in the thesis, and also
identify my concrete contributions to the projects.

Chapter 2 The Sketchplore project was executed during an internship
stay at the User Interfaces Group of Aalto University (Finland),
under the guidance of Prof. Dr. Antti Oulasvirta. Dr. Daryl
Weir contributed to the implementation of the predictive models
and layout optimiser used in the system, and the quantitative
user study. I was responsible for conceptualising, designing, and
implementing the Sketchplorer design tool, and for the qualitative
study with designers. This resulted in one full paper [146], an

12 Collaboration Acknowledgements

interactive demonstration [145], and a workshop paper [147].

Chapter 3 The Familiarisation project was initiated by me during a sec-
ond internship stay at the User Interfaces Group, under the guid-
ance of Prof. Dr. Antti Oulasvirta. The project was continued
after I returned to the Expertise Centre for Digital Media (EDM)
at Hasselt University, and Prof. Dr. Kris Luyten advised and
contributed to the completion of this research. Dr. Jussi Jokinen
collaborated on this project, and was responsible for the imple-
mentation of the visual learning model. I was responsible for de-
signing and developing the Familiariser system, and evaluating it
with users. This research resulted in one full paper [141].

Chapter 4 The PaperPulse project was in collaboration with Prof. Dr.
Raf Ramakers, under the guidance of our advisor Prof. Dr. Kris
Luyten. The ideation and conceptualisation was a joint effort,
and a result of several brainstorming sessions. A majority of
the implementation of the PaperPulse design tool was done by
Raf. I contributed to finalising the visual aspects of the GUI, de-
sign and implementation of the PaperPulse widgets, hardware-
related challenges with circuit printing and electronics, and eval-
uating with end-users. This resulted in one full paper [118],
two demonstrations [121, 119], and a poster [120]. The Suit Up!
project was undertaken by me, under the guidance of Prof. Dr.
Kris Luyten. Tom De Weyer provided help with hardware im-
plementation of the interactive buttons. This resulted in one ex-
tended abstract [142] and one workshop paper [143].

The Evolving Smart Home project was conceptualised by me, un-

Research Collaboration Acknowledgements 13

der the guidance of Prof. Dr. Kris Luyten and with the ad-
vice from my co-promotor Prof. Dr. Andrew Vande Moere. I
proposed the Design–Deploy–Dispose (DDD) cycle, that formed
the foundation of this research. Under my supervision, Jelco
Adamczyk created the EasyHome software prototype to enable
end-user home customisation. Steven Peeters continued work-
ing on the smart home theme, and under my supervision, imple-
mented a logging toolkit for home interfaces. These two projects
resulted in Jelco and Steven’s Bachelor thesis publications, under
the guidance of Prof. Dr. Kris Luyten. I proposed the initial ideas
for these theses, assisted and advised during the implementation
stages, and provided feedback on the textual content.

Chapter 5 The BinPut project was initiated by me, and conducted un-
der the guidance of Prof. Dr. Kris Luyten and Prof. Dr. Johannes
Schöning. I was responsible for the design, implementation, and
evaluation of the input technique.

14 Collaboration Acknowledgements

15

Contents

Acknowledgements 1

Abstract 5

Scientific Contributions 7

Research Collaboration Acknowledgements 11

1 Introduction 27
1.1 Interactive Elements for User Interfaces 28
1.2 Improving Placement in Graphical User Interfaces 29
1.3 Facilitating Placement in Post-WIMP User Interfaces . . . 32
1.4 Chapter Overview and Contributions 35

Part I Improving Placement on GUIs 37

2 Improving Design-Time Placement on Graphical Layouts 39
2.1 Introduction . 40

2.1.1 The Placement Problem in GUI Layouts 41
2.1.2 Sketching vs. Optimisation 42
2.1.3 Research Question 43

16 Contents

2.1.4 Sketchplore: Sketching and Exploring Layout
Designs . 43

2.2 Background . 47
2.2.1 Sketching Tools and Interaction Techniques 47
2.2.2 Heuristic and Data-Driven Methods for Layout

Generation . 48
2.2.3 Metrics and Model-based Optimisation 50

2.3 Walkthrough and Design Overview 51
2.3.1 Walkthrough: Designing a Blog Page 52
2.3.2 Overview of Interactions 55

2.4 Predictive Models for Interactive Layouts 56
2.4.1 Overview: The Colour Patches Task 57
2.4.2 Visual Clutter . 58
2.4.3 Visual Search . 59
2.4.4 Target Acquisition 60
2.4.5 Grid Quality . 61
2.4.6 Colour Harmony 62
2.4.7 Scope and Limitations 63

2.5 Dynamic Layout Optimisation during Sketching 64
2.5.1 Definition: Layout Design Task 65
2.5.2 Objective Function 66
2.5.3 Inferring the Design Task 66
2.5.4 Dynamic Optimisation 67
2.5.5 Filtering and Diversification of Results 68

2.6 System Implementation 70
2.7 Study 1: End-User Evaluation 70

2.7.1 Optimisation Task 71

Contents 17

2.7.2 Participants . 72
2.7.3 Apparatus, Procedure, and Experimental Design . 72
2.7.4 Results . 73

Selection Time . 73
Aesthetic Ratings 75

2.7.5 Summary . 75
2.8 Study 2: Design Study with a Live System 75

2.8.1 Study Design . 76
2.8.2 Results . 77

2.9 Discussion . 79
2.9.1 Summary . 79
2.9.2 Revisiting the Research Question 81
2.9.3 Principles for Design-Time Placement 82
2.9.4 Limitations and Next Steps 83

2.10 Acknowledgements . 84

3 Improving Use-Time Placement on Graphical Layouts 85
3.1 Introduction . 86

3.1.1 Research Question 87
3.1.2 Familiarisation: Restructuring Graphical Inter-

faces using Visual Learning Models 88
3.1.3 Overview: Four Familiarisation Principles 89

3.2 Background . 91
3.2.1 Visual Search . 92
3.2.2 Layout Generation and Interface Restructuring . . 92
3.2.3 Run-time Adaptation of Interfaces 94

3.3 Modelling Familiarity . 95

18 Contents

3.3.1 Principle I: Frequency 96
3.3.2 Principle II: Serial Position Curve 97
3.3.3 Principle III: Visual Statistical Learning 102
3.3.4 Principle IV: Visual Sampling Based on a Gener-

ative Cognitive Model 104
3.4 Familiariser: System Overview 106

3.4.1 Page Parsing . 108
3.4.2 Page Categorisation 111
3.4.3 Usage History Updates 111
3.4.4 Template Computation 112
3.4.5 Target Page Restructuring 113
3.4.6 Triggering Familiarisation 114

3.5 Architecture and Implementation 115
3.5.1 Logging User History 116
3.5.2 Generating a Template 117
3.5.3 Restructuring the Page 118

3.6 Evaluation . 118
3.6.1 Study Tasks . 119
3.6.2 Apparatus . 119
3.6.3 Participants . 120
3.6.4 Method . 120

1. Learning Phase 121
2. Test Phase . 122

3.6.5 Results . 122
3.7 Discussion . 123

3.7.1 Summary . 123
3.7.2 Revisiting the Research Question 124

Contents 19

3.7.3 Principles for Use-Time Placement 125
3.7.4 Limitations and Next Steps 126

3.8 Acknowledgements . 127

Part II Facilitating Placement on Post-WIMP UIs 129

4 Facilitating Placement of Interactive Electronics on Post-
WIMP Interfaces 131
4.1 Introduction . 133

4.1.1 Placing Electronics on Post-WIMP Interfaces . . . 133
4.1.2 Interactive Paper 134
4.1.3 Research Question 134
4.1.4 PaperPulse: Placing Electronic Elements onto

Paper Interfaces . 135
4.2 Background . 137

4.2.1 Fabricating Electronic Circuits 137
4.2.2 Design Tools for Sensors-Based Interactions 138

4.3 PaperPulse: An Overview 139
4.3.1 PaperPulse Essentials 140
4.3.2 Walkthrough: A Diet Tracking Card 141

4.4 PaperPulse Widgets . 145
4.4.1 Design Challenges 145
4.4.2 Off-the-Shelf Widgets 146
4.4.3 Paper-Membrane Widgets 147
4.4.4 Pull-Chain Widgets 149
4.4.5 Summary of PaperPulse Widgets 151

4.5 Pulsation: Specifying Sensor Logic By Demonstration . . 152

20 Contents

4.6 Architecture and Implementation 153
4.6.1 Pulsation Interpreter 154
4.6.2 Filtering Signal Noise 155
4.6.3 Generating Electronic Circuits 155
4.6.4 Generating Printable Pages 156

4.7 Evaluation . 157
4.8 Beyond Paper: Smart Clothing and Home Interfaces . . . 159

4.8.1 Placement of Interactive Electronics on Smart
Clothing . 161

4.8.2 Placement on Home Interfaces 162
The Evolving Smart Home 162
End-User Configuration of Home Interfaces 164
End-User Logging of Interactions 164

4.9 Discussion . 166
4.9.1 Summary . 166
4.9.2 Revisiting the Research Question 167
4.9.3 Principles for Facilitating Placement of Electronics 169
4.9.4 Limitations and Next Steps 169

4.10 Acknowledgements . 171

5 Facilitating Placement of Input Controls Across Interfaces 173
5.1 Introduction . 174

5.1.1 Research Question 175
5.1.2 BinPut: An Input Technique for Post-WIMP In-

terfaces . 176
5.2 Background . 177

5.2.1 Post-WIMP Input Techniques 177

Contents 21

5.2.2 Device-Independent Input and Input with Few
Keys . 179

5.3 BinPut: Adapting Binary Search for Input 180
5.3.1 Walkthrough: An Input Task 181
5.3.2 Input Commands 181
5.3.3 Searching the Input Space 182

Traversing with Binary Search 183
Switching to Linear Search 183

5.3.4 Undo Mechanism 185
5.4 Type-Independence with BinPut 185

5.4.1 Number Entry . 185
5.4.2 Text Entry . 186
5.4.3 List Selection . 186
5.4.4 One-Dimensional Scrolling 187
5.4.5 Multi-dimensional Pointing 189

5.5 Device-Independence with BinPut 189
5.5.1 Input Device Requirements 190
5.5.2 Output Device Requirements 192
5.5.3 Implementations 192

5.6 Theoretical Evaluation of BinPut 193
5.6.1 Number of Input Moves 193
5.6.2 Input Task Time . 195

Cognition Time . 195
Motor Time . 195

5.7 Evaluation: Device- and Type- Independence of BinPut . 196
5.7.1 Study Conditions 196
5.7.2 Apparatus . 197

22 Contents

5.7.3 Participants . 198
5.7.4 Procedure and Experimental Design 199
5.7.5 Results . 201
5.7.6 Discussion . 204

5.8 Customising BinPut for Specific Scenarios 205
5.8.1 Interleaving Binary and Linear Search 205
5.8.2 Unistroke Gestures 206
5.8.3 Weighted Input Sets 207

5.9 Discussion . 208
5.9.1 Summary . 208
5.9.2 Revisiting the Research Question 208
5.9.3 Principles for Placing Input Controls 210
5.9.4 Limitations and Future Works 210

Part III Closing 213

6 Discussion 215
6.1 Summary of Contributions 215
6.2 Research Goals and Resulting Principles 217
6.3 Limitations and Future Works 218

A Nederlandstalige Samenvatting 223

23

List of Figures

2.1 Sketchplorer system overview diagram 46
2.2 Sketchplorer walkthrough 53
2.3 Colour patches task results 57
2.4 Example designs from Associative Memory 69
2.5 End-user study . 74
2.6 Designer study . 76

3.1 Familiarisation stages . 89
3.2 Familiarity principles . 100
3.3 Sample User History Snapshot 101
3.4 Results from Familiarity Principles 102
3.5 Familiariser Pipeline . 106
3.6 Example Model Results 1 109
3.7 Example Model Results 2 110
3.8 Familiariser System Components 115
3.9 Study stimulus and task 121

4.1 PaperPulse workflow . 136
4.2 A diet card example . 141
4.3 Printing and assembly process 144
4.4 Slider widgets . 145

24 List of Figures

4.5 Off-the-shelf widgets . 147
4.6 Paper-membrane widgets 148
4.7 Pull-chain widgets . 150
4.8 Pull-chain mechanism . 151
4.9 Deigns by users . 158
4.10 Button prototypes . 161
4.11 Design–Deploy–Dispose Cycle 163
4.12 Workflow for placing home interfaces 165
4.13 Workflow for logging interactions with home interfaces . 166

5.1 BinPut search tree . 182
5.2 BinPut Algorithm . 184
5.3 Input tree for Roman characters 187
5.4 One-dimensional scrolling 188
5.5 Multi-dimensional pointing 190
5.6 Theoretical evaluation results 194
5.7 Illustration of the study conditions 198
5.8 Graphs of the learning curve results 202
5.9 Study results for average completion time 203
5.10 Unistroke gesture input . 207

25

List of Tables

1.1 Research Questions and Contributions 34

2.1 Key Features of Sketchplorer 67
2.2 Designer study results summary 78

3.1 Summary of results for average visual search time and
fixation count per target feature. 123

4.1 Strengths and limitations of PaperPulse widget families . 152

5.1 Ordering of conditions for the user study 200

6.1 Summary of contributions highlighting the research
challenges, and key principles applied for each case. . . . 219

26 List of Tables

27

Chapter 1

Introduction

The design and construction of user interfaces is one of the main areas
of focus in human–computer interaction. Entire academic conferences
have been dedicated to this subject , and it has been one of the primary
areas of interest for several research groups. The placement of inter-
active elements, and interactions, is a fundamental activity during the
creation of any user interface. It entails adding or embedding elements
onto the interface, positioning and sizing them, assigning various vi-
sual attributes, and specifying the interactions they enable. The place-
ment of elements on a user interface defines the interaction possibili-
ties enabled, and it is key to determining the usability and acceptance
of the interface.

User interfaces can be categorised into: (1) Graphical user inter-
faces (GUIs) and (2) Post-WIMP user interfaces. Classically, GUIs are
visual interfaces, rendered on a 2D display. Post-WIMP interfaces,
inspired by GUIs, extend their capabilities beyond flat displays, and
mouse-and-keyboard input. The main goal of this thesis is to improve

28 1 Introduction

how elements are placed on typical GUI layouts, and to facilitate place-
ment while constructing post-WIMP interfaces.

1.1 Interactive Elements for User Interfaces

The term interactive element is used to describe an elementary compo-
nent of an interface, which enables some interaction. A user interface
is composed of a set of such elements, combined to achieve a specific
set of tasks. The exact definition of an interactive element is dependent
on the type of user interface being addressed.

Graphical User Interface (GUI): Here, interactive elements are de-
fined as visual interface elements, such as buttons, icons, input fields,
and other commonly used widgets. These elements are typically
placed or positioned on a canvas, and rendered on a two-dimensional
graphical display. Users can visually locate these elements on an inter-
face, and interact using input devices such as a keyboard or mouse.

Post-WIMP User Interface: Such interfaces contain an extended
set of interactive elements. They typically consist of one or more
interaction techniques that are not dependent on classical 2D ele-
ments known from GUIs [149]. Post-WIMP interfaces support differ-
ent mediums and modalities for interaction, such as gestures, tangi-
ble interfaces, and ubiquitous interfaces. Interactive elements can be
physical in nature, and can contain electronic components such sen-
sors and actuators.

This thesis applies a design science approach to investigate chal-
lenges and opportunities related to placement of elements on user in-
terfaces I present concepts, techniques, and artefacts to improve and

1.2 Improving Placement in Graphical User Interfaces 29

facilitate placement, and thus the design and construction of user in-
terfaces.

1.2 Improving Placement in Graphical User
Interfaces

The design process of constructing a GUI involves placement of el-
ements on a two-dimensional canvas. The resulting composition of
elements is referred to as an interface layout. The placement and or-
ganisation of interface elements on a graphical layout influence the
overall quality. Aspects such as position, size, colour, among others,
determine both user performance and overall perception of the inter-
face. Poor placement of elements can lead to minor user annoyances
at best, and potential disasters at worst (e.g. [138]. In ‘The Design of
Everyday Things’ [106], Norman mentions six principles for good user
interface design. Placement of elements has direct influence on some
of these principles such as visibility and consistency. Gestalt principles
[157] underline the importance of placement aspects such as position-
ing and sizing of elements. Predictive models such as Fitts’ Law [40]
can quantify the effect of placement on user performance, and have
been used extensively to design and validate user interfaces. It is ev-
ident that effective layout design is crucial for the success of an inter-
face. A well-designed layout should pay attention to visuospatial as-
pects such as effort required to search for key features, pointing time to
select elements, and learning aspects that aid in recall. It should also
take into account aesthetic details such as colour harmony, balance,

30 1 Introduction

and grid alignments. The first part of this thesis, therefore, focuses on
improving the placement of interactive GUI elements on visual lay-
outs.

Advances in interface design tools and technologies have greatly
facilitated the process of layout creation. Prototyping, sketching, and
design tools enable designers to externalise their ideas, and find solu-
tions to design problems. Extensive GUI programming frameworks,
interface builders, and toolkits, have enabled programmers to convert
design prototypes into functional user interfaces. Designers possess
the knowledge and skills to design good interfaces, but can often be bi-
ased by their experience, thus restricting their exploration of the entire
solution space [32]. Additionally, they might not have complete infor-
mation about the target users, and lack methods to objectively verify
the usability of their produced designs. While commercial design tools
for interface creation are readily available, they often provide only lim-
ited assistance, or guidance, during the design process. They tend to
take a neutral stance towards design, and refrain from steering de-
signers towards better outcomes. Brad Myers et al. [99] discuss how
tools could instead “enforce or encourage” highly usable interfaces. In
this spirit, we believe that it can be beneficial to support a more com-
prehensive design exploration, at early stages, enabling designers to
detect objectively good alternatives, and improve their designs. This
inspires the first research question in this dissertation:

Research Question 1: How can we computationally support designers
in the process of design exploration during early stages of placement of inter-
active elements on a graphical interface?

In chapter 2, I address challenges for enabling systematic design

1.2 Improving Placement in Graphical User Interfaces 31

exploration, and suggest Sketchploration as a viable technique. Sketch-
ploration combines early-stage sketching with design exploration with
the aid of a layout optimiser. It enables designers to quickly create pos-
sible solutions to a design problem. The machine abstracts the design
problem from drawn sketches, and uses this to generate novel design
alternatives, and proposes these to the designer in the form of sugges-
tions. By using predictive models, the optimiser can select objectively
good designs, thus improving the overall quality of solutions.

Sketchploration enables designers to improve designs for the gen-
eral population. Individual users often encounter a wide diversity of
designs. Placement of elements can vary greatly from one interface
to another. As a result, users are required to adapt to each interface,
and expend additional effort in learning different strategies. In addi-
tion to designer-enforced global consistency, it can be beneficial to also
support local consistency in placement of elements for each user. This
motivates the next research question:

Research Question 2: How can we adapt graphical interfaces for in-
dividual users’ by automatically placing elements at familiar locations, at
use-time, such that they are consistent with a user’s mental model and enable
faster visual recall?

The main challenge is to derive an accurate representation of the
user’s mental model, and use this to place elements on a new inter-
face. In chapter chapter 3, I explore Familiarisation models, and pro-
pose techniques to automatically place elements on new interfaces.

By addressing both design-time and use-time placement of inter-
active elements, the first part of this thesis addresses overall improve-
ments in GUI layouts.

32 1 Introduction

1.3 Facilitating Placement in Post-WIMP User
Interfaces

Mark Weiser’s vision of ubiquitous computing [156] stressed upon the
interweaving of hardware and software such that computers them-
selves would disappear into the background, and computation would
be seamlessly embedded in our environments. Post-WIMP interfaces
are a step towards realising this vision, and expand the ways in which
we can interact with computers. As a result of these added capabil-
ities, post-WIMP interfaces tend to be require more engineering than
GUIs. In GUIs, placement of elements deals with positioning them
on a digital canvas, and assigning them visual and interaction at-
tributes. In the context of physical interfaces, placement additionally
involves the integration (or embedding) of other interactive compo-
nents, such as sensors and actuators, into physical mediums. Plac-
ing various interactive elements on different post-WIMP interfaces is
non-trivial and technically challenging. The second part of this thesis,
therefore, aims to facilitate the placement and integration of interactive
elements onto such interfaces, to enable various interactions. Unlike
general-purpose GUIs, post-WIMP technologies support the creation
of special-purpose user interfaces, customised towards specific tasks
and interactions. These open up opportunities for highly-customised
and personalised interfaces. Given the personal nature of such inter-
faces, it is desirable for end-users to create and adapt the interface by
placing interactive elements on them. However, non-expert users lack
technical skills and knowledge required for creating such interfaces.
This motivates the following research question:

1.3 Facilitating Placement in Post-WIMP User Interfaces 33

Research Question 3: How can we facilitate non-experts in placing in-
teractive electronic elements on special-purpose physical interfaces by obviat-
ing the needs for programming and electronics skills?

In chapter 4, I discuss an integrated workflow to create physical,
paper-based, interactive interfaces. PaperPulse is a design tool that
enables -experts to place low-cost electronic widgets onto paper sub-
strates, and specify the desired interactivity, without requiring them
to acquire expertise in programming or electronics. The end-to-end
approach guides the user through the process of starting from a visual
design, and creating a standalone interactive artefact. I also briefly dis-
cuss facilitating placement of electronics on other physical mediums
such as clothing and home interfaces.

An end-to-end workflow enables the creation of special-purpose
interfaces, supporting customised interactions. However, it does not
address traditional input tasks such as navigation, selection, or text
and number entry. On GUIs, such tasks can be efficiently executed us-
ing a mouse and keyboard. In contrast, post-WIMP interfaces typically
integrate various sensing mechanisms to present users with alternate
interaction techniques for input. As a consequence, input data from
sensors can be error-prone or of low granularity. This issue inspires
the final research question of this thesis:

Research Question 4: How can we facilitate the placement of standard
input controls on post-WIMP interfaces while maximising consistency across
interfaces and reducing re-learning of the input technique?

Chapter 5 addresses challenges for placing consistent input con-
trols on a diverse set of interfaces. It discusses a universal input tech-
nique BinPut, which adapts the binary search algorithm to enable con-

34
1

Introduction

Interface Type Research Question Contribution

Graphical
User Interfaces
(Part I)

Improve interface layouts
by supporting design-time exploration Sketchplore (Chapter 2)

Improve interface layouts automatically
to individual users Familiarisation (Chapter 3)

Post-WIMP
User Interfaces
(Part II)

Facilitate non-experts to create
special-purpose interfaces PaperPulse (Chapter 4)

Facilitate placement of standard
input controls across interfaces BinPut (Chapter 5)

Table 1.1: The four research questions for improving and facilitating placement on user inter-
faces, and the corresponding contributions presented in this thesis.

1.4 Chapter Overview and Contributions 35

sistent input across different types of post-WIMP interfaces. The tech-
nique has minimal input requirements, and can be applied to any
inherently-ordered input type. Thus, BinPut provides a simple tech-
nique for placing input controls on interfaces where it might otherwise
be tedious or infeasible.

The above four research questions cover key aspects towards the
overall goal of improving and facilitating the creation of user inter-
faces. Table 1.1 provides a summary of the research questions and
corresponding contributions.

1.4 Chapter Overview and Contributions

This dissertation makes contributions in the area of (1)improving and
(2) facilitating the placement of interface elements and interactions on
user interfaces.

First, it investigates methods to improve the quality of graphical
user interfaces, by allowing designers to explore optimised layout de-
signs, and by enabling automatic use-time repositioning of elements.
Next, it discusses facilitating the creation of customised post-WIMP
user interfaces, and placement of input controls on such interfaces.
The core chapters (2–5) are a collection of concepts, projects, and dis-
courses, which contribute towards the broader goal of supporting the
construction of user interfaces. Below is a brief overview of the these
chapters, highlighting the main contributions.

Part I: Improving Placement on Graphical UIs

Chapter 2 discusses improvements to design-time placement

36 1 Introduction

on graphical interfaces and presents Sketchplore. It enables
designers to improve placement of interactive elements on
graphical layouts during the ideation stage of the design
process. Sketchplorer uses a mixed-initiative approach to
provide optimised layout suggestions, enabling rapid gen-
eration of diverse solutions to a design problem.

Chapter 3 addresses use-time improvement to placement of el-
ements. It presents principles of familiarity, based on visual
learning models, that can improve the placement of layout
elements on new interfaces for individual users. Familiariser
automatically positions elements on new and unvisited in-
terfaces to improve them for individual users.

Part II: Facilitating Placement on Post-WIMP UIs

Chapter 4 investigates placement of electronics on physical in-
terfaces. It presents PaperPulse, providing non-experts with
a simplified workflow for placing interactive elements on
paper substrates. The system automates circuit generation,
and enables non-experts to specify interactions with a visual
programming technique. It extends the concept beyond pa-
per to other interfaces, such as wearables and smart homes.

Chapter 5 tackles placement of input controls onto physical
and graphical interfaces, and presents BinPut as a universal
technique that enables this for a diverse range of interfaces
and modalities, and for different types of input.

PART I

Improving Placement on
Graphical User Interfaces

A graphical user interface (GUI) contains interactive visual elements,
such as windows, icons, menus, pointers (WIMP), rendered on a graphical
display. GUIs are the most commonly-used type of interfaces, enabling us to
efficiently and intuitively communicate with a computer. In the first part of
this dissertation, I highlight the importance of placement of interactive visuals
elements on GUIs, and investigate concepts, techniques, and tools to improve
the placement of interactive elements on graphical layouts.

38

39

Chapter 2

Improving Design-Time
Placement on Graphical Layouts

Interface designers create graphical user interface (GUI) layouts by
placing a set of interactive elements on the interface canvas. They
make placement decisions such as position, sizing, and colour of el-
ements, and the overall organisation of the layout. Sketching is often
used as a problem-solving technique for quickly generating plausible
solutions. For interactive digital layout designs, such as websites, the
design space of possible solutions is immense, making it hard for de-
signers to explore a large number of ideas in a short timespan.

In this chapter, I address this design-time exploration challenge,
and proposes sketchploration as a concept to improve design-time
placement of elements on GUIs. Sketchplorer combines sketching with
design exploration using an optimiser. As the designers sketches out
viable designs on the canvas, the optimiser abstracts the design task,
and generates new designs optimised for performance and aesthetics.

40 2 Improving Design-Time Placement on GUIs

Designers can then use this to quickly create viable alternatives that
explore a larger part of the design space than otherwise possible.

The contents of this chapter are based on the following publica-
tions:

1. KASHYAP TODI, DARYL WEIR, and ANTTI OULASVIRTA.
Sketchplore: Sketch and explore with a layout optimiser. In Pro-
ceedings of the 2016 ACM Conference on Designing Interactive Sys-
tems, DIS ’16, pages 543–555. ACM, New York, NY, USA, 2016.
ISBN 978-1-4503-4031-1. doi: 10.1145/2901790.2901817

2. KASHYAP TODI, DARYL WEIR, and ANTTI OULASVIRTA.
Sketchplore: Sketch and explore layout designs with an opti-
miser. In Proceedings of the 2016 CHI Conference Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’16, pages 3780–
3783. ACM, New York, NY, USA, 2016. ISBN 978-1-4503-4082-3.
doi: 10.1145/2851581.2890236

3. KASHYAP TODI, DARYL WEIR, and ANTTI OULASVIRTA.
Sketchplorer: A mixed-initiative tool for sketching and exploring
interactive layout designs. In Proceedings of the CHI ’17 Workshop
on Mixed-Initiative Creative Interfaces. 2017

2.1 Introduction

A graphical user interface (GUI) typically consists of interactive ele-
ments, such as buttons, widgets, input fields, and other visual and
textual contents. Designers create GUI layouts by placing a set of these
interactive elements, based on the design task, on a two-dimensional

2.1 Introduction 41

canvas. They make placement decisions such as position, sizing, and
colour of elements, and the overall organisation of the layout. The aim
of the designer while constructing a layout is twofold—the interface
should be visually appealing to attract users, and should enable users
to efficiently complete desired tasks. This chapter is motivated by the
observation that optimisation methods have great untapped potential
in design tools for constructing such layouts. It focuses on the activ-
ity of sketching graphical layouts, in which a designer applies a visual
problem-solving approach for placing elements on a canvas.

2.1.1 The Placement Problem in GUI Layouts

Placement of UI elements on GUIs can be a challenging task for de-
signers. The aim is to create a meaningful and performant layout, for
a given design task, by placing interface elements on a given canvas.
We define the placement problem as an interface layout problem that
includes making decisions related to:

• Position: The (x,y) location of elements on the canvas.

• Size: The width and height of each element.

• Colour: Colours assigned to the element, and the overall colour
harmony of the design.

• Organisation: Organisation of elements on the canvas to main-
tain properties such as visual balance and grid quality.

These are key aspects that influence usability of resulting designs,
and thus important for designers to correctly estimate. In his book

42 2 Improving Design-Time Placement on GUIs

on Sketching User Experiences [23], Buxton gives a background on the
role of sketching during the design of interfaces. Sketching is used by
designers to find possible solutions by quickly placing elements on a
canvas. Factors such as experience bias and lack of knowledge about
the users can, however, limit this design exploration. Objectively esti-
mating the impact of changes to a layout on the overall usability and
performance is also hard for designers. Predictive models can evalu-
ate a design to estimate factors such as the time required to visually
find an element (visual search), and movement time for manipulating
a cursor to acquire targets, among others. Optimisation techniques can
be used to quickly generate designs by placing elements on the canvas,
and evaluate designs for aesthetics and performance. The fluidity of
sketching, combined with this speed and objectivity of optimisation,
can offer a promising approach to enabling systematic exploration,
and solving placement problems, in early stages of layout design.

2.1.2 Sketching vs. Optimisation

Sketching and optimisation are typically seen as two opposing activ-
ities. On the one hand, sketching is known to be an imprecise and
fluid exercise, where the designer attempts to generate several fea-
sible design solutions for a given problem. During this process, the
designer leaves ample room for uncertainty and ambiguity. To this
extent, sketching can be defined as a visual tool for problem solving.

On the other hand, optimisation is a precise search for the single
best solution to a given problem. The optimisation process strives to be
unbiased and objective, and does not leave room for much uncertainty.

2.1 Introduction 43

However, the two activities can also be thought of two ways of
reaching the same goal. Both sketching and optimisation can be even-
tually framed as accelerated search processes to quickly solve a given
problem. They attempt to explore the design space efficiently, filter
out infeasible solutions gradually, and finally arrive at one, or multi-
ple, good solutions.

2.1.3 Research Question

The observation that an interplay between sketching and optimisation
can aid designers to quickly generate multiple good solutions to a de-
sign problem inspired the following research question:

How can we computationally support designers in the process of design
exploration during early stages of placement of interactive elements on a
graphical interface?

The remainder of this chapter describes, in detail, our approach
to tackling several relevant research challenges to enable this, and
presents Sketchplore, a concept and tool for designers to simultaneously
improve their designs and systematically explore design alternatives.

2.1.4 Sketchplore: Sketching and Exploring Layout De-
signs

From a combinatorial perspective, the design of layouts is notoriously
hard. Take, for example, a canvas of 1024⇥ 768 pixels 1 , divided into a
24⇥ 32 grid. Here, there are 158,400 one-element layouts and a whop-

1Standard XGA resolution has 1024⇥ 768 pixels.

44 2 Improving Design-Time Placement on GUIs

ping 1041 eight-element layouts. Although algorithms may not be able
to find the optimal solution in such large search spaces, they can “par-
allelise” search, and find candidate solutions and suggest them to de-
signers. This could help designers in exploration, who are known to be
limited to a handful of designs per iteration [32]. Also, algorithms can
complement designers by exploring design spaces neutrally without
being constrained by past experiences, to produce designs that the de-
signer might not otherwise conceive. Employing an optimiser might
also improve the quality of designs for end-users (see [43, 111, 167]).
A combination of sketching and optimisation, therefore, could enable
designers to improve placement of elements on GUIs.

However, several hard research challenges emerge. First, layout
design is a complex, multi-objective task addressing not only usabil-
ity but also aesthetic qualities [58, 164]. Presently no algorithmic ap-
proach exists that can address both. Second, optimisation typically
takes a long time, due to combinatorial complexity, and no solution
has been shown for fast-paced, iterative design of layouts. Third, al-
though optimisation methods can attack very complex design prob-
lems, their insistence on precise inputs contradicts sketching. To better
fit with design practice, optimisers should radically reduce the effort
for defining tasks (see e.g., [9]). Crucially, they should not attempt
to override design thinking. Instead, final decisions should be left to
designers, who possess knowledge that computers might not.

‘Sketchploration’ is a novel concept to exploit interactive optimisa-
tion methods in design tools, in particular for layout sketching. We ap-
proach sketching as a problem-solving activity and a tool for visual think-
ing [23, 101]. The goal is to enable access to results of real-time optimi-

2.1 Introduction 45

sation, yet impose as few control requirements on the designer as pos-
sible, in order to support the natural flow of sketching. To achieve this,
Sketchplorer, illustrated in Figure 2.1, relaxes typical requirements for
controlling an optimiser in a way that respects the design process. Un-
like with previous solutions (e.g., [43, 9]), no additional input is re-
quired from the designer. As the designer sketches, the system in-
fers the designer’s task automatically. The optimiser simultaneously
searches for local improvements (small changes), and explores global
alternatives (large changes). Importantly, it deploys several predictive
models of user performance and perception adapted from literature.
This allows it to make informed suggestions that “pull” the designer
toward usable and aesthetic designs. Sketchplorer does not over-
ride the designers’ sketch, but presents optimised designs as glance-
able suggestions. Technically, sketchploration extends model-based in-
terface optimisation [9, 43, 167] to real-time design exploration under
ill-specified and changing design goals.

This chapter presents the first investigation of the concept, focus-
ing on interactive layouts familiar from GUIs, web pages, menus, and
dialogs. It complements existing work by showing how an interactive
optimiser can be integrated with fast-paced and unconstrained early-
stage sketching. Our implementation presently supports 10 common
types of elements and hierarchical (nested) placement. The concept
could be implemented for any sketching tool that affords extending
the workspace and communication with a server. This chapter also
reports results from two empirical evaluations—with end-users and
with trained designers.

46
2

Im
proving

D
esign-Tim

e
Placem

enton
G

U
Is

+

Local
Optimiser

Global
Optimiser

Search
Space

Predictive Models Explore

Canvas

Timeline

Current Design
Design Space

Real-Time Optimisation Sketchploration Environment

Figure 2.1: Sketchplorer is an interactive layout sketching tool supported by real-time model-
based optimisation. The tool is designed to facilitate the creative and problem-solving aspects
of sketching without requiring extensive input. While a designer is sketching, a design task
is automatically inferred. The optimiser uses predictive models to make suggestions for local
and global changes that improve usability and aesthetics. Suggestions appear on the side, and
never override the designer’s work.

2.2 Background 47

2.2 Background: Sketching Tools and UI Op-
timisation

Our goal is to support sketching with computational methods. In
this work, we investigate sketching as a tool for visual thinking and
problem-solving, and do not delve into freehand drawing and render-
ing aspects of sketches. When understood as problem-solving, sketch-
ing is characterised by its quick, ambiguous, and uncertain nature
[50, 162]. The goal of designers is not a point design, but rather explo-
ration. Sketching unfolds as an iterative process of idea-generation, re-
finement (exploitation), and redefinition. Designers entertain multiple
hypotheses and may backtrack to previous designs. Details to a sketch
are added gradually, and they can be changed at any stage. Idea-
generation in sketching has recognised limits and biases [32]. These
properties make sketching both a challenge and an opportunity for
computational support.

2.2.1 Sketching Tools and Interaction Techniques

Research on computational support for sketching originates from
Sutherland’s Sketchpad [137], which highlighted the benefits of a dig-
ital medium. Johnson et al. [68] offer a comprehensive review of com-
putation support for sketching. Here, we highlight a few main trends
in research.

First, improved recognition technologies have brought pen-and-
paper like techniques to sketching [161]. Second, several interaction
techniques have been proposed to enhance the drawing of shapes in

48 2 Improving Design-Time Placement on GUIs

sketching (e.g., [8]). Third, some approaches have looked at integra-
tion with other activities in design, and a better support for going back
and forth between designs. SILK [83] and DENIM [88] explored sev-
eral such techniques. Fourth, sketching has been extended from 2D
spatial displays. For example, Kitty [73] enabled sketching for anima-
tions and dynamic authoring of illustrations. Fifth, design heuristics
have been implemented in sketching tools. Examples include colour
palettes [97], template-based sketching [70], and design guidelines.
While these ensure that designs meet certain standards, they allow
neither exploring designs nor refining them for some objectives.

2.2.2 Heuristic and Data-Driven Methods for Layout
Generation

Heuristic approaches to layout generation have explored balance, con-
sistency, or the golden cut (e.g. [39, 90]). Although heuristics can
produce results that are visually appealing and resemble real designs,
they do not predict effects on end-users. They lack means for conflict
resolution. To our knowledge, there are no heuristic approaches that
solve both spatial and visual aspects of layout.

Data-driven approaches such as Webzeitgeist [81] mine a large
number of designs and can produce new ones for designer given in-
puts. Although colour, size, position, and grouping can be addressed,
the approach results in basically “mimicry” of existing designs. It does
not offer a principled way of setting objectives for goals like usability
and aesthetics. They offer no guarantee that the outcomes are good
beyond visual appeal.

2.2 Background 49

Some work has been done on automatic generation and improve-
ment of static graphical media such as posters, flyers, or slides.
O’Donovan et al. [107] used an energy-based model considering aes-
thetic heuristics, such as alignment, balance, and flow. DesignScape
[108] is a tool for assisting novice designers in creating graphical me-
dia. While our work, at first glance, resembles DesignScape, the as-
sumptions and underlying mechanisms of the two systems are very
different. DesignScape does not consider interactive layouts, which
form the basis of GUIs. Additionally, the tool is meant to improve
final-stage designs, based on realistic content. It is not designed for
the uncertain and ambiguous nature of initial-stage sketching, where
the actual content is still subject to change. With regard to under-
lying optimisation mechanisms, DesignScape uses a reduced design
space which does not include element colour, and makes simplifying
assumptions about aesthetics rather than using validated predictive
models from psychology.

Finally, there has been extensive work on automating layout gen-
eration based on constraint satisfaction. Interfaces are specified as a
set of semantic and spatial constraints, and solver programs generate
possible designs for given screen sizes. Lok and Feiner [89] reviews
these techniques. However, the constraints still have to be constructed
by a designer, and moreover the generated layouts have no guarantees
about aesthetic quality or interaction performance.

50 2 Improving Design-Time Placement on GUIs

2.2.3 Metrics and Model-based Optimisation

Previous works have evaluated interfaces automatically using differ-
ent metrics. BaLOReS [91] proposed five structure principles and met-
rics to guide designers and evaluate resulting designs. QUESTIM [166]
semi-automatically evaluated website layouts using several metrics,
and displayed the results to designers. DesignEye [124] used models
of saliency and visual clutter to aid design teams in evaluating and im-
proving designs. While these works aimed at evaluating an interface
layout, they did not investigate systematically suggesting improve-
ments.

Model-based user interface optimisation uses combinatorial opti-
misation to automate interface generation. The idea is to represent a
design problem and design knowledge (e.g., user simulations, mod-
els, heuristics) as an objective function for a search algorithm that iter-
atively improves designs for the stated objectives. Unlike heuristic ap-
proaches, model-based optimisation relies on theories and predictive
models of how users interact or perceive a layout and an algorithm
that searches the design space systematically. The layout problem can
be considered as an instance of the well-known assignment problem
[80]. Fitts’ law has previously been used, together with bigram data on
transition frequency, to find keyboard layouts that minimise expected
finger travel distance [87]. This idea has been extended to widget lay-
outs in SUPPLE using branch-and-bound [43].

Some previous works have investigated model-based optimisation
of interfaces with a designer-in-the-loop. DON [77] assisted designers
in generating menus and dialog boxes using an integrated knowledge
base model. TRIDENT [152] enabled designers to generate business-

2.3 Walkthrough and Design Overview 51

oriented application interfaces. It encapsulated design guidelines in
a decision tree, and suggested the best path for a given task. It al-
lowed designers to intervene and choose alternate paths, to guide the
design process. Closer to the work presented in this chapter, Men-
uOptimizer [9] interactive is a design tool that used predictive models
of human performance for layout optimisation. It used a model of
menu search together with a consistency heuristic to optimise hierar-
chical menus for application. It integrated several types of support to
the QtDesigner development environment. It introduced an interac-
tive optimiser that proposed global and local changes like moving a
menu item to improve user performance. However, it was designed
for “point optimisation” and contained an overwhelming amount of
controls and visualisations and insisted on problem specification for
the optimiser. The system was also limited to hierarchical menus, and
did not consider visual designs. The authors concluded that design-
ers mostly used global suggestions (suggestions for the whole menu
system).

In this chapter, we extend model-based optimisation to design tools
for visual layouts, thus enabling designers to sketch and explore place-
ment of interactive elements on graphical interfaces.

2.3 Walkthrough and Design Overview

We had four objectives for integrating computational support to a de-
sign tool:

1. Support quick and ambiguous sketching, and leave room for un-
certainty, by providing capabilities to defer the task of specifying

52 2 Improving Design-Time Placement on GUIs

details at any stage of the design process.
2. Allow fluent shifts between exploration and refinement.
3. Provide support for multiple hypotheses, and give an overview

of progress, by providing a non-destructive, and editable, time-
line of previous alternate designs.

4. Minimise user actions not related to the design activity itself by
inferring details whenever possible.

5. Eliminate ambiguity, in designers’ minds, while perceiving op-
timised results by communicating with the designer in a timely
and predictable manner.

2.3.1 Walkthrough: Designing a Blog Page

This walkthrough illustrates the use of Sketchplorer from a designer’s
perspective.

Sketching the initial layout: Sketchplorer initially presents the de-
signer with an empty canvas. The designer starts sketching by creating
a structure for her design (Figure 2.2a). Drawn elements can be moved
around, or resized, at any time. She ambiguously sketches out boxes,
serving as proxies for the elements of her blog page. Sketchplorer dy-
namically infers hierarchy of elements, and does not require the de-
signer to explicitly specify ordering or grouping. It starts computing
both local and global suggestions in the background.

Refining and adding details: An inspector panel, similar to most
commercial sketching tools, sits on the right-edge of the display, and
can be pulled out at any time. This can be used to specify details,
such as the element type, colour, and importance (usage probability)

2.3 Walkthrough and Design Overview 53

Canvas

Explore

Inspector

Importance
Levels

Timeline

Recolour/Fix

Figure 2.2: Overview of Sketchplorer. A large canvas is surrounded
by the various features. Designers can (a) ambiguously sketch layout
designs, and (b) refine and add details. They have immediate access to
a timeline of saved designs. They can improve designs by (c) using fix
and recolour suggestions, or (d) exploring globally optimised designs.

of objects on the canvas (Figure 2.2b). The designer now adds details
to some of the elements. For instance, she indicates that her blog page
has a heading and a paragraph element, and marks them as being of
high importance for the optimiser. She also specifies that the image
(site logo) is of low importance. Satisfied with the first version of the
design, she taps the save (‘+’) button. This adds the current design to
the designer’s timeline, and provides a preview. The designs here can

54 2 Improving Design-Time Placement on GUIs

be retrieved, and edited, at any later time. This enables the designer to
see the evolution in designs, borrow previous ideas, and select feasible
alternatives.

Fine-tuning and local changes: While the designer sketches and
refines, the system continuously streams the description of the current
design to the optimiser. The local optimiser uses the current design as
a starting point to suggest fixes and provide recolour options. Pulsat-
ing icons in the inspector panel appear when fix and recolour options
are available (Figure 2.2c). The designer refers to these suggestions.
She realises that by using the recolouring suggestion, she can make
the paragraph of text stand out. She chooses one of the recoloured
layouts, and continues working on her sketch.

Exploring new designs: By abstracting from the current design,
the global optimiser retrieves unique designs, and returns them to the
designer. An explore panel, residing on the left edge of the display (Fig-
ure 2.2d), is periodically updated with these designs. The designer
browses through the list of alternatives, and finds two interesting al-
ternatives. She adds the first to her list of saved designs, and drags the
second onto the canvas, to continue working on it.

In a short duration, the designer’s collection of saved layouts is
populated with several feasible alternatives—some sketched by the
designer, and the others with the aid of the optimiser. While the
above phases appear to be linear, in practice, sketching and explo-
ration phases are intertwined.

2.3 Walkthrough and Design Overview 55

2.3.2 Overview of Interactions

Sketchplorer is designed for a multitouch environment using a large
display, and uses touch gestures for all controls.

Sketching and refinement: Sketchplorer allows designers to either
sketch ambiguous bounding boxes for layout elements, or pick out
a specific element type and draw it on the canvas. It takes care to
accurately order every element on the canvas, without requiring the
user to explicitly bring-to-front or send-to-back. Each time an element
is changed, so as to change the hierarchy, the ordering is dynamically
adapted. Hierarchical groups of elements can be selected and manip-
ulated at the same time. This inferred hierarchy is also essential for the
internal representation of a layout in the optimiser. The colour picker
allows designers to select the hue–saturation combination, and adjust
the brightness. Double-tapping on an element reveals an in-place pop-
over, and allows adding details without having to move to the inspec-
tor. Individual elements’ importance can be adjusted in the inspector
panel. Alternatively, an overlay can be enabled, that displays the im-
portance of each element, and allows batch adjustments (Figure 2.2b).

Saved versions and timeline: Benefits of interactive timelines and
alternate versions have been emphasised in HCI literature [139]. In
Sketchplorer, the current design can be added to the timeline at any
time. The timeline provides an overview of all saved designs, and
any alternative design, or intermediate sketch, can be dragged back to
canvas. This allows designers to compare designs, have an overview
of the evolution of their designs, and iterate over sketches.

Integration with the optimiser: To the designer, the optimisation
appears as a two-pronged approach, consisting of local and global

56 2 Improving Design-Time Placement on GUIs

optimisation. The local optimiser listens in on every change in the
design, including changes in sizes and positions of elements. It cre-
ates fine-tuned designs, that maintain the overall composition of the
original sketch, but improve certain aspects of it. Recolouring sugges-
tions maintain the sizing and placement of elements, and offer har-
monious recolouring suggestions, which also improve aesthetics and
performance. In contrast, the global optimiser listens exclusively to
changes in design tasks, and acts upon them. It abstracts away from
exact details, allowing it to explore the entire design space, and gen-
erate unique designs. It performs exploration in real-time and period-
ically returns improved results that are immediately displayed to the
designer in an expandable explore panel. The optimiser focuses on cre-
ating unique and improved solutions, and not on simply refining or
polishing a solution.

2.4 Predictive Models for Interactive Layouts

Sketchplorer is the first user interface optimiser using models of hu-
man performance and perception to optimise both spatial and colour
aspects of interactive layouts. We chose models that cover both aes-
thetic features, such as symmetry, and sensorimotor performance mea-
sures, such as target selection time. The models have also been vali-
dated in empirical studies and shown to align with user preferences
and performance. In this way, we aim to produce layouts that are aes-
thetically pleasing and usable in a predictable way. However, note
that the choice of models in the system is flexible. If there is evidence
for another model being better than those we use currently, it is very

2.4 Predictive Models for Interactive Layouts 57

3
1

4

2
5

(a) Clutter

5

3

1 2
4

(b) Visual
search

3

1

4
2

5

(c) Target ac-
quisition

3

1

4

2

5

(d) Grid qual-
ity

3

4

5

2

1

(e) Colour har-
mony

Figure 2.3: Results for the colour patches task. These five layouts
are outcomes when optimising for a single objective at a time. Sketch-
plorer combines these objectives into multi-objective search. Numbers
refer to a ranking based on frequency of use.

simple to add this without changing the workflow of Sketchplorer.

2.4.1 Overview: The Colour Patches Task

In order to examine the effect of optimising for a model as an objective,
and learn how the models affect optimisation, we created the colour
patches task. Here, the optimiser’s goal is to assign five rectangular el-
ements to a 5 ⇥ 5 grid. Each element is a block or patch with a single
colour. We assume that each patch is interactive, with a certain prob-
ability of being targeted. We sample these probabilities from a Zipf
distribution [168]. These probabilities are used to weight the average
visual search and target acquisition times using a formula given later
in the chapter. To produce candidate designs, we traverse the elements
in a random order and pick a random colour, size and position for
each. The colours are chosen from Kelly’s set of perceptually distinct
colours [74], and the sizes are chosen randomly from three fixed sizes.
For each objective, we evaluate many random designs to find the one

58 2 Improving Design-Time Placement on GUIs

with the lowest objective value, then perform small changes to search
for local improvements in the design.

Figure 2.3 shows the results. Elements are numbered by their usage
probability, with 1 being the most common. The results show that each
objective focuses on either spatial or colouring aspects, but may ignore
or contradict the others. In the following sections, we will detail these
results.

2.4.2 Visual Clutter

We use the Rosenholtz model [125] to minimise visual clutter. The idea
is that as more objects are added to a display, it becomes more difficult
to place a new object that it is perceptually unique and easy to identify.
The layout elements have some distribution of visual features. As the
number of elements grows, the feature distribution occupies more of
the available space. This model has been shown to correlate with user
perception of clutter, a correlate of aesthetic preference.

Given vectors of the features for each object on the display, we com-
pute the mean and covariance ⌃ of these vectors. In our implementa-
tion, we consider only colour in our feature vector. The clutter of the
display is then defined simply as the determinant of the covariance
matrix, |⌃|. This can be thought of as the volume of the 1 s.d. covari-
ance ellipsoid. We take the inverse of the clutter score for the objective
function.

Figure a shows the colour patch results for this model. Each item
has the same colour, which makes sense as this choice minimises the
volume of the colour covariance.

2.4 Predictive Models for Interactive Layouts 59

2.4.3 Visual Search

We implement the Kieras-Hornof model of visual attention [76] to
maximise visual search performance by enhancing the perceptual
uniqueness of commonly searched elements.

Prediction consists of two parts: (1) a set of availability functions
determine whether the features of a target are perceivable from the
user’s current eye location; and (2) a simple GOMS-style algorithm es-
timates the time in milliseconds required to locate the target.The avail-
ability functions are based on the eccentricity from the current eye lo-
cation e and angular size s of the target. Additive Gaussian random
noise with variance �2 = vs proportional to the size of the target is
assumed. For each feature, a threshold t is computed as t = ae2+be+c

and the probability that the feature is perceivable is given by:

P (available) = 1� �

✓
t� s

�2

◆
, (2.1)

where �(x) is the c.d.f. of the standard normal. We further define
P (available) = 1 when e < 1°, since targets in the fovea are always
perceived.

We use parameter values from the original paper, which were
shown to accurately predict visual search time for data from an older
study [158]. Note that our implementation only uses colour as an
availability feature, since the authors found size and shape could only
reliably be perceived for targets close to the fixation location.

For memory effects we use a simple logarithmic model based on
the number of previous acquisitions. We optimise assuming the user
is an expert and has visually searched the interface 1000 times in to-

60 2 Improving Design-Time Placement on GUIs

tal. However, this assumption can be easily changed for example to
account for novices.

Figure b shows the visual search colour patches. Each item has a
different colour to make it visually unique, and all items are clustered
in the top left of the grid, where the simulated search begins. More
important items are closer to the left corner. Note that this objective
conflicts with the clutter metric, which rewards layouts where every-
thing is the same colour. Thus, there is a tradeoff between aesthetics
and visual search performance that can be controlled by adjusting the
weights.

2.4.4 Target Acquisition

Following previous work on performance-optimisation of layouts
[87, 167], we deploy a variant of Fitts’ law [94] as our model of tar-
get acquisition. Fitts’ law favours transitions between large elements
at minimum distances, and estimates the upper bound of expert point-
ing performance. Including this model allows us to optimise for effi-
cient selection of elements, rather than purely for aesthetics. T is the
time it takes for an end-effector to reach a target from a given distance
D. For target width W , T is given by:

T =
X

r2R

tr =
X

r2R

h
a+ b log2

✓
D

W
+ 1

◆i
(2.2)

where R is the set of responses when navigating to the target.
When optimising, we assume that users interact with the interface

elements using touch. We use values of a and b from a recent study

2.4 Predictive Models for Interactive Layouts 61

[36]. To compute D, we assume that the starting point of the finger
is the centre of the display. We compute W according to the angle of
approach. Fitts’ law parameters for other input devices, such as the
mouse, are readily available, and the optimiser can easily be adapted
for these devices.

Figure c shows the colour patches for target acquistion. The most
important element is centrally placed, close to the assumed starting
position. The other elements are arranged around the center and have
larger sizes so that they can be acquired without moving the finger far
from the center.

2.4.5 Grid Quality

We use the Balinsky symmetry metric [10] as a measure of grid qual-
ity. It calculates the distance to the closest symmetrical layout. It was
shown to correlate with aesthetic preferences.

We start with the layout vertex set s = {(x1, y1), . . . , (xn, yn)},
rescaled such that the x-axis coincides with the axis of symmetry and
the y-axis contains the centre of mass of the xi. This is mapped to the
complex plane to obtain a set zi = xi + Iyi. These points are horizon-
tally symmetrical if they consist only of real values and complex con-
jugate pairs. A fundamental result in complex analysis states that this
is equivalent to the stipulation that all coefficients aj of the polynomial

Pn(z) =
nY

j=1

(z � zj) =
nX

j=0

ajz
j (2.3)

are real. Thus, the asymmetry for a layout is obtained by constructing

62 2 Improving Design-Time Placement on GUIs

this polynomial and averaging the size of the imaginary parts of the
coefficients. Vertical symmetry is scored in the same way, after a sim-
ple coordinate transformation. Our overall metric is an even weight-
ing of these two scores.

Figure d shows the colour patches for this metric. As expected, the
result is symmetric in both axes.

2.4.6 Colour Harmony

Harmonic colours are sets of colours that combine to provide a pleas-
ant visual perception. Harmony is determined by relative position in
colour space. There is no universal definition for a harmonic set. Here,
we use the colour templates that were proposed by Cohen-Or et al.
[31]. These consist of one or two sectors of the hue wheel, with given
angular sizes. These templates can be arbitrarily rotated to create new
sets.

The distance of a layout X from a template T is given by

D(X, T) =
X

e2X

DH(e, T)S(e), (2.4)

where DH(e, T) is the arc-length distance between the hue of element e
and the hue of the closest sector border in T , and S(e) is the saturation
channel of e. If a colour falls inside one of the sectors of T , DH(e, T) is
identically zero.

In order to rapidly evaluate many layouts, we pre-generate a set C
of 78 harmonic sets by rotating the templates in fixed increments. We

2.4 Predictive Models for Interactive Layouts 63

define the colour harmony H by:

H(X) = min
T2C

D(X, T) (2.5)

Figure e shows the colour patches with the best match to one of
the harmonic sets. Patches 1–4 have similar hues but different satura-
tions, and patch 5 has a hue on the opposite side of the colour wheel.
Together these colours form a harmonic set with the Y-template de-
fined in [31]. Note that the placement and ordering of the patches is
somewhat chaotic, since this model does not consider those factors.

2.4.7 Scope and Limitations

These models allow us to deal with the positions, size, alignment and
colour of layout elements. An optimiser is able to search for layouts
that improve for user performance, but also for aesthetic qualities. If
implemented alone, each objective drives a layouts to an unbalanced
design favouring one aspect. A multi-objective optimiser allows find-
ing good compromises. A limitation is that these models do not allow
us to deal with semantic aspects of layouts, such as naming or group-
ing of elements. These decisions are currently left to the designer, but
could be incorporated in future versions if models for these aspects are
found.

64 2 Improving Design-Time Placement on GUIs

2.5 Dynamic Layout Optimisation during
Sketching

Layout design is a high-dimensional, NP-hard problem [35, 136].
Search is computationally expensive, as multiple objective values are
calculated. Yet, when integrated with fast-paced sketching, only brief
computation times are allowed. Further, the design problem is also
under-specified, because the designer may not have time to specify
point objectives and assumptions for each sketch.

Our approach builds on three ideas: First, we relax the require-
ment to specify a design task to an optimiser. Instead, we infer the
“implicit” design task assumed in the sketch currently edited. The
internal representation of the design task, in its simplest form, is com-
prised of the different layout elements placed on the canvas, and their
‘importance’ values, if specified. Using this, We can search alterna-
tives without asking the designer anything. Second, we relax the as-
sumption that the goal is to find the optimum design. Instead, we
run several optimisers simultaneously that explore the design space
with different assumptions. We pick a few diverse design ideas and
pass them to the designer, and let his/her choices guide the search.
Third, to accelerate search, we make use of the observation that there
are far fewer (abstract) design tasks than there are (concrete) layouts.
Using this observation, we pre-train an “associative memory” that has
a good starting point for many design tasks that might occur. When
Sketchplorer is running, it maps the present sketch to the closest seed
in the associative memory to offer a good solution very quickly. By
contrast, MenuOptimizer assumed a point-optimisation goal and en-

2.5 Dynamic Layout Optimisation during Sketching 65

forced a complete reset of the optimiser’s state when a single element
was changed [9].

2.5.1 Definition: Layout Design Task

Layout design is similar to the letter assignment problem from key-
board optimisation [21] and to the layout facility problem (LFP), where
the task is to place machines with fixed/varying size in a workshop
[35, 136]. Layout design in HCI, as we address it here, is a special
case, where the goal is to find a non-overlapping planar orthogonal
arrangement of n coloured rectangular elements so as to minimise the
cost function (see below). There are two differences to LFP: 1) ele-
ments can be coloured; and 2) the cost function is more complex. We
make two further additions to the task. First, we define the task to
involve element types, each with unique size constraints. Second, we
allow groups. The elements can be nested as long as their bounding
box edges do not overlap.

Internally, our optimiser represents a layout as a 2D array of point-
ers to information objects which store the colours, usage probabilities,
etc. of the elements. We use an efficient maximal empty rectangles al-
gorithm [150] to find places in this array where we can move or grow
elements to modify the layout. Additionally, each element also has an
internal array representing the positions of any child elements relative
to itself. We treat the canvas in a recursive loop from the highest to the
lowest level of this hierarchy.

66 2 Improving Design-Time Placement on GUIs

2.5.2 Objective Function

We define a multi-objective task where we seek to minimise a
weighted combination of the outputs of the five models:

U =
5X

i=1

wiSi, (2.6)

where the weights wi sum to 1 and the individual objectives Si are
normalised to the range [0, 1].

In addition, we introduce two optional canvas-level constraints.
We compute alignment following an approach similar to [11], in which
we count the number of ‘alignment lines’, or object edge positions,
weighted by the average size of object edges lying on those lines. We
compute packing efficiency as the proportion of the minimum bound-
ing rectangle for the layout elements which is empty, averaged with
the proportion of the overall canvas which is empty. These help the
optimiser improve quicker in the grid quality dimension. They align
elements horizontally and vertically and “pack” them. However, since
they aggressively push search toward harmonic layouts, it may drive
search to a local minima. We address this by introducing a filtering
stage where we compare results for solution quality and diversity (see
below).

2.5.3 Inferring the Design Task

We extract the design task by analysing the present layout being edited
by the designer. We map a layout to a design task by 1) counting the

2.5 Dynamic Layout Optimisation during Sketching 67

Sketchplorer Duration Search Neighbourhood Objective

Feature (s) method size and type function

Recolour 1-10 s VNS Small; only Colour only
colour changes

Fix 1-10 s VNS Small; only All
spatial changes

Explore 1-10 s AM Large; only All
spatial changes

Explore 10-120 s VNS Medium; only All
spatial changes

VNS: Variable Neighbourhood Search, AM: Associative Memory

Table 2.1: Sketchplorer uses a multi-threaded optimisation strategy
that both explores and exploits. To support dynamic changes in
the task, two methods are used in parallel: Variable Neighbourhood
Search and Associative Memory.

number of occurrences for each element type, and 2) making a distinc-
tion between high and low importance items for each element type.

2.5.4 Dynamic Optimisation

During sketching, the optimiser system runs several optimisers simul-
taneously, each exploring the design space differently, and dedicated
to a functionality in the Sketchplorer workspace. An overview is
given in Table 2.1. The optimisers deploy two search heuristics.

Variable Neighbourhood Search (VNS) [54] is a strategy combining
a neighbourhood-based meta-heuristic to a hill-climbing algorithm.
This strategy was chosen to ensure good exploration of the design
space, since it is able to increase the search radius if the search gets

68 2 Improving Design-Time Placement on GUIs

stuck. It allows larger and larger changes to be made in each iteration.
In our case, we run a steepest descent with different pre-set neigh-
bourhood sizes. A neighbourhood is defined as a change to the colour,
position, or size of an element. Small neighbourhood means that one
iteration can only produce one change to a layout. Large neighbour-
hood means that multiple changes are allowed. The optimisers use
VNS with small (e.g. 1, 2, 3) or medium radii (e.g. 4 to 10). Figure 2.4
shows good and failed designs produced in about 4 minutes on a lap-
top computer. Since Sketchplorer is targeted towards skilled design-
ers, we take a mixed-initiative approach [63], and rely on the designer
to identify good designs, and filter out unappealing or illogical ones.

Associative Memory (AM) [163] is executed in parallel. AM is a
memory-based learning approach to dynamic optimisation problems.
The idea is to populate the memory with good solutions offline, and
map the current design task to its closest-matching task in AM, and use
that as a starting point for search. We implemented layout remapping
by searching AM for layouts with design tasks that were supersets of
the current design, ordering the elements in each by usage probability,
then searching for matched type pairs. We trained our AM for 6,600
randomly generated design tasks. The live optimiser loaded the AM
in advance in order to respond quickly (within few seconds).

2.5.5 Filtering and Diversification of Results

Since the parallel searchers explore different parts of the design space,
and we cannot show all results to the designer, we pool the results
and filter them using a bi-objective pareto front criterion. We define

2.5 Dynamic Layout Optimisation during Sketching 69

www.YourLinkHere.com

www.YourLinkHere.com

www.YourLinkHere.com

www.YourLinkHere.com

www.firstlink.com
www.secondlink.io
www.thirdlink.org

Heading goes here

Heading goes here

www.firstlink.com
www.secondlink.io
www.thirdlink.org

Heading goes here

www.firstlink.com
www.secondlink.io
www.thirdlink.org

Form Field_ Form Field_

ButtonForm Field_

Button

www.YourLinkHere.com

Figure 2.4: Examples of (a) successful and (b) unsuccessful global de-
signs from the Associative Memory, before real-time optimisation. De-
signs were computed from randomised starting points, in 4 minutes
each.

this as the weighted (and normalised) sum of the objective score and
inter-layout distance. Inter-layout distance is a score from 0 to 1 where
0 means identical layouts and 1 means that all elements have different
locations. This diversifies search results and prevents identical designs
from being shown to the designer.

70 2 Improving Design-Time Placement on GUIs

2.6 System Implementation

The Sketchplorer tool is implemented in Objective-C. Multitouch in-
put is detected using PQ Labs multitouch SDK, and interactions are
recognised using customised gesture recognition. The optimisers are
written in Python, and use parallelisation for speed-ups. Given no
prior information, the optimiser assigns equal weights to each of the
five models (= 0.2). This could, however, be tuned to further steer
the optimisation. When designers make changes to the current de-
sign, layout files (in JSON format) are sent from the design tool to the
optimisers asynchronously. The optimisers run on dedicated laptops
(we use Macbook Pros), and all devices communicate using ThoMoN-
etworking. Local vs. global design changes are identified using file-
name tags. To avoid outdated retrievals, the optimisers kill existing
threads when a new file is received. Generated designs are immedi-
ately pushed back to the design tool.

2.7 Study 1: End-User Evaluation

Our first study addresses optimisation of the design of the Windows
Phone home screen. This study involves no designer in the loop.
The goal is to evaluate our optimisation approach by testing its out-
puts with end-users. As the use-case scenario, we chose the Windows
Phone home screen, a complex design task that could not have been
addressed with previous approaches. This task allows the inclusion
of several interactive elements, with multiple icon sizes, colours, and
positions, spanning over three pages. We compare an optimised de-

2.7 Study 1: End-User Evaluation 71

sign against the baseline in a study where users are asked to select
applications from the home screen. As our baseline, we implemented
the factory default of a Lumia 930 phone. Apps which were not pre-
installed on the phone were added in a random order at the end of
the default menu, as in an unpersonalised order-of-installation layout.
Comparing against a commercial design provides us with a realistic
baseline for the layout optimiser.

2.7.1 Optimisation Task

The inputs to the optimiser are a list of 55 apps, together with usage
probabilities from the LiveLab database [134]. We sampled the pri-
mary colours from the app icons manually. When generating layouts
in the optimiser, we allowed as many 8 ⇥ 6 grid pages as necessary,
and each icon was sized at 1 ⇥ 1, 2 ⇥ 2, or 2 ⇥ 4 grid cells. These val-
ues match the standard grid and icon sizes of Windows Phone home
screen layouts, which is used as the baseline. For some apps, the icon is
coloured according to system-wide accent colours. Others have icons
with developer-chosen colours. For the system-coloured icons, the op-
timiser was free to choose from a set of 20 perceptually distinct colours
[74].

Offline optimisation follows a different approach than in the real-
time, dynamic optimisation task. Here, we performed multiple
restarts of a random search procedure with different objective weights.
For each weight set, we generated and evaluated 10,000 random lay-
outs, then performed 3000 iterations of local search around each of the
best three designs.

72 2 Improving Design-Time Placement on GUIs

The menu with the best score over all weight sets was chosen as
the design to evaluate with users. The models predicted that our op-
timised design would be better than the baseline in terms of visual
search (score 0.106 vs. 0.117, a difference of ⇠270ms), selection (0.108
vs 0.104, ⇠90ms), and grid quality (0.005 vs. 0.013), similar in colour
harmony (both 0.015), and worse in terms of clutter (0.028 vs 0.020).

2.7.2 Participants

We recruited 20 student participants (4 male), aged 20 to 36 (mean 26.7,
s.d. 5.2). They had 2 to 8 years of experience with smartphones (mean
4.3, s.d. 1.8). Participants were required to not have prior experience
with Windows Phone devices. Two participants were left handed. Par-
ticipants were compensated with a cinema ticket.

2.7.3 Apparatus, Procedure, and Experimental Design

We implemented a logging application to display the menus and col-
lect performance information on a Nexus 5 smartphone running An-
droid 4.4.3.

Participants performed 275 trials with each menu. In each trial,
they were shown a textual stimulus with the target name. After tap-
ping to dismiss the stimulus, the first page of the current menu was
shown. Participants had to navigate to and tap the appropriate icon.
A hint button was available at all times, to remind participants of the
stimulus. The timestamps for all taps and swipes were logged, along
with any incorrect selections. As stimulus, different apps were shown
several times. The exact number of times each app was displayed

2.7 Study 1: End-User Evaluation 73

ranged between 1 and 25, depending on their usage probability. We
used a smoothed version of the distribution used to train the optimiser,
in order to increase the number of applications with more than 1 selec-
tion.

Participants performed the experiment while seated in a quiet
room. They were asked to hold the phone in their non-dominant hand
and tap with the index finger of their dominant hand. The order of
conditions was counterbalanced.

After this, participants were shown images of the full layouts and
asked to rate them from 1 to 5 in terms of overall aesthetic quality, use
of colour, composition logic, and symmetry. They were also asked to
indicate a preferred layout.

2.7.4 Results

Selection time and measures of perceived aesthetics are the dependent
variables used in this study.

Selection Time

As our principal performance metric, we use the average selection time
over all trials, measured from the tap to dismiss the stimulus to the tap
on the correct icon. We filtered out trials with selection errors or hint
requests.

Figure 2.5 shows our results and the first page of each of the de-
signs. Over all trials, there is no significant difference between the av-
erage selection times (optimised: 2922ms, baseline: 3020ms) between
the two menus (paired t-test, t(19) = �0.95, p > 0.05).

74 2 Improving Design-Time Placement on GUIs

All

All
All except

first

M
ea

n
se

le
ct

io
n

tim
e

(m
s)

Optimised
Baseline

2370ms

2922ms 3020ms

2542ms

1000

0

2000

3000

4000

All except first

Optimised Baseline

Figure 2.5: End-User Study. Left: Homescreens of the optimised and
baseline designs, and corresponding average selection times. Right:
Graphs for average selection times (95% CIs). The optimised design
was significantly faster when the first selection for each app was ex-
cluded.

However, when the first selection for each app in each condition
is removed from consideration, the difference in selection times (op-
timised: 2370ms, baseline: 2542ms) between the menus is significant
(paired t-test, t(19) = �2.67, p < 0.05). This removal is justified given
that users were mostly familiarising with the menus during the first
selections. We also analysed only the latter half of trials for each app,
to see if the learning benefit continued to grow. However, the results
when doing this were very similar. This suggests that the majority of
the learning takes place on the first selection. This result matches with
our models that predict expert performance rather than novice.

2.8 Study 2: Design Study with a Live System 75

Aesthetic Ratings

For the aesthetic ratings, we found no significant differences between
the overall ratings and logic of composition scores across the designs
(Wilcoxon signed rank test, Z = �1.80,�1.79, p > 0.05). However,
users rated the use of colour in the optimised design significantly
higher than the baseline (Z = 2.38, p < 0.05), but the level of sym-
metry significantly lower (Z = �2.65, p < 0.05).

Half (10) of the 20 users expressed a preference for the optimised
design over the baseline. Several participants noted that they disliked
one or both designs because the menus did not prioritise the apps they
themselves used. This reflects the app usage dataset, which is several
years old.

2.7.5 Summary

To summarise the results from the user study, the optimiser was able
to produce some performance benefits over a realistic baseline design.
The observed differences were largely predicted by our models.

2.8 Study 2: Design Study with a Live System

To evaluate Sketchplorer as an integrated sketching and exploration
tool, we conducted a user study with experienced designers. We
aimed to evaluate whether Sketchplorer is effective in supporting cre-
ativity and problem-solving in sketching. We were interested in de-
signers’ insights and impressions, and not on validating the produced
designs themselves, as this had been investigated in the previous

76 2 Improving Design-Time Placement on GUIs

Figure 2.6: Designer Study. We evaluated Sketchplorer with 10 trained
designers. Participants completed design tasks while using the differ-
ent features supported by the design tool.

study. During the study, participants were given design tasks, and
asked to use the tool to create viable solutions. A free-form, and open-
ended, methodology was used during the study. We did not direct or
enforce participants to use the optimiser’s suggestions but were inter-
ested in seeing if this would happen spontaneously and organically.

2.8.1 Study Design

We recruited a total of 10 participants (2 female), age ranging from 22
to 40 years (mean 29.4). All participants, except one, had an educa-
tional or professional background in design, and all of them had some
experience using digital design tools. Participants were compensated

2.8 Study 2: Design Study with a Live System 77

with two cinema tickets.

All design tasks were performed on a 55-inch (140 cm) 4K display
(3840 ⇥ 2160), with a PQ Labs G5S multitouch overlay. The display
was tilted to a comfortable angle, and participants performed tasks
in standing position (Figure 2.6). The design tool ran on a Macbook
Pro (OS X 10.10). In addition, two Macbook Pros were used for the
optimisers.

Procedure: After initial training, in which participants created sim-
ple designs and explored the tool, they were given a ‘design brief’ for
the main study task. Similar to the example in the walkthrough, they
were asked to create designs for a blog page. There were no strict
requirements, and participants could freely decide on the exact ele-
ments, and their details. They were asked to create a few different
designs, and could choose to make as many as they wished to, in a
time frame of 30 minutes. Participants were free to save designs that
were sketched with or without the aid of the optimiser. At the end
of the task, they assigned ratings (1–5) to their saved designs, using
a custom ‘viewer’ application. Importantly, the viewer did not reveal
whether a given design had been entirely sketched by the participant,
or if it was optimiser-assisted. Finally, we gathered further informa-
tion through a questionnaire and a semi-structured interview.

2.8.2 Results

The study aimed at gauging whether Sketchplorer allowed designers
to sketch freely, and their usage of different features the tool provided.
On reviewing participants’ list of saved designs, we found that 8 out of

78 2 Improving Design-Time Placement on GUIs

ID N(Saved) N(Recolour) N(Fix) N(Global)

1 3 0 0 3
2 5 0 0 2
3 5 3 1 0
4 5 0 2 2
5 4 1 0 1
6 3 0 0 0
7 4 0 3 0
8 8 0 0 5
9 10 2 3 4

10 1 0 0 1

N(Saved) : Total number of saved layouts
N(Recolour) : Saved layouts with recolour-suggestions
N(Fix) : Saved layouts with fix-suggestions
N(Global) : Saved layouts with global-suggestions

Table 2.2: Summary of features used by each participant in Study 2. 9
out of 10 designers took advantage of suggestions offered by the opti-
miser, to achieve their final designs.

10 participants had at least one optimiser-aided design in their saved
list. Additionally, participant 10 stated to have borrowed an idea from
the optimiser suggestions, but recreated it manually in his own sketch.
Optimiser-assisted designs received an average rating of 3.47 out of 5
(S.D: 0.91), and unassisted sketches had an average rating of 3.48 out
of 5 (S.D: 0.77). Thus, designers were equally satisfied with optimiser-
generated designs as they were with their own work.

Table 2.2 summarises the optimiser-features used by the partici-
pants, in the saved versions.

Responses to the questionnaire and interview session were encour-

2.9 Discussion 79

aging for Sketchplorer. Apart from minor technical glitches, partici-
pants commented that they could sketch out their ideas quickly and
freely, and the multitouch interactions were easy and straightforward.
The ability to have a large touch-friendly canvas was appreciated. All
participants stated that they would certainly prefer a visual timeline
in such design tools, over traditional save-dialogs, and such a feature
would be useful in future tools.

With regards to the optimiser-related features, participants espe-
cially liked the explore option. They found the suggestions to be dis-
tinctly different, useful, and indicated that it would help them while
designing. One commented, "I kind of like how the suggestions turn my
approach upside down, and I can get hints from there". There was a split be-
tween participants while rating the usefulness of fix and recolour dur-
ing the given design task. A few participants found some of the re-
colour suggestions “so 90s” or flashy, and wished that the suggestions
would be more subtle. One participant commented that he would
rather explore new and different ideas, than ‘fix’ existing ones. How-
ever, participants also indicated that recolouring and fixing would
help them in future design activities.

2.9 Discussion

2.9.1 Summary

This chapter has studied a new concept for interactive design optimi-
sation, backed by predictive models, and integrated within a sketching
tool. Sketchploration enables designers to improve placement of inter-

80 2 Improving Design-Time Placement on GUIs

active elements on a GUI, at design-time. By inferring design tasks im-
plicitly, and by using a combination of exploration and exploitation, a
layout optimiser can complement the sketching activities of a designer
in real time, and facilitate them to explore larger design spaces without
having to divert their attention to the optimisation process. During
sketchploration, the designer–optimiser system is continuously both
sketching (or, in optimiser terms, exploiting) and exploring. Crucially,
the optimiser is not suggesting just anything for the designer. The
predictive models of the optimiser try to “pull” the designer towards
usable and aesthetic designs. A designer can reject designs that are
unsatisfactory for some reasons that the optimiser may not include in
its objective function. This way, the designer and the optimiser can
iteratively approach a region of good designs without communicating
an objective function. We are not aware of a similar approach in the
past.

To verify our approach, we conducted two user studies. Study
1 exposed end-users to a visual layout generated by the optimiser,
comparing it against a commercial baseline design. The results were
favourable, the optimised design was significantly better in average
selection time, when measured after the first selection of an app.
Colour harmony was rated higher, but the layout less harmonic. It is
intriguing to note that the obtained data are mostly in alignment with
the predictions made by the models. Study 2 gauged Sketchplorer’s
ability to provide designers with a sketching environment conducive
to sketchploration, and gathered insights about the different features.
Most designers in our study added some of the optimisers’ designs
to their saved list of designs, and used the optional features in their

2.9 Discussion 81

design process. Among the three suggestion types available (fix, re-
colour, and explore), designers particularly appreciated the explore
feature. While scoring the final designs they had created and saved, on
an average, they rated optimiser-assisted designs to be as good as their
sketched designs (mean rating = 3.5 on a scale of 1 to 5). Given that
the participants had educational and even professional background in
design, we consider this a notable achievement.

Overall, sketchploration can be seen as a promising concept; one
that can lead to not only empowering designers, but also to systemati-
cally improving usability and aesthetics, and raising the bar of design.

2.9.2 Revisiting the Research Question

The goal of this chapter was to investigate concepts and methods
to construct a graphical interface at design-time such that designers
could improve the placement of interactive elements on the layout.
The research question, as stated in the introduction, is:

How can we computationally support designers in the process of design
exploration during early stages of placement of interactive elements on a
graphical interface?

The work presented in this chapter has addressed this research
question by making the following technical contributions:

1. Design principles for integrating a model-based interface opti-
miser to a sketching tool.

2. Extension of model-based interface optimisation to interactive layouts
by: 1) Formulation of (unconstrained) layout sketching as an op-
timisation problem, allowing for addressing the positions, sizes,

82 2 Improving Design-Time Placement on GUIs

and colours of elements. 2) A novel, theoretically informed ob-
jective function addressing five aspects important in layout use:
perception of clutter, visual search performance, pointing perfor-
mance, grid quality, and colour harmony.

3. A dynamic optimisation approach that 1) infers the designer’s task
from the current layout, 2) simultaneously explores and exploits
in the design space and 3) reacts rapidly to changes in the current
sketch.

4. The Sketchplorer design tool that integrates this approach into a
sketching and design exploration tool.

Quantitative and qualitative results from two studies provide first
evidence for the concept and our approach.

2.9.3 Principles for Design-Time Placement

The key design principles derived from this work, towards the goal of
improving placement on GUIs at design-time are:

1. Support quick and ambiguous placement, and leave room for
uncertainty, by providing capabilities to defer the task of speci-
fying details at any stage of the design process.

2. Allow fluent shift in focus between exploration and refinement.
3. Support for multiple hypotheses, and give an overview of

progress, by providing a non-destructive, and editable, timeline
of previous alternate designs.

4. Minimise user input not related to the placement activity by in-
ferring details whenever possible.

2.9 Discussion 83

5. Eliminate ambiguity in designers’ minds by communicating
with the designer in a timely and predictable manner.

2.9.4 Limitations and Next Steps

While our work lays the foundation for sketchploration, it also un-
covers many challenges and opens up opportunities for future efforts.
First, while this chapter covers visual aspects of designs, it does not
capture semantics or the dynamic aspect of interactions that interfaces
afford. Additionally, it is restricted to elements with rectangular foot-
prints. Relationships between elements, such as logical sequences, rel-
ative importance, and adjacency play a critical role in the design [132].
To further improve exploratory results, integrating these aspects in the
future is desirable. Integrating more shapes and widget types will also
increase the impact of such a system. Second, our optimisation tech-
niques are highly dependent on well-validated models; further devel-
opment of accurate predictive models is a key factor to improvements
in results. Third, although the optimiser’s results mostly had high
scores, we note that its performance was limited to designs with ten
or fewer elements. Layout optimisation for HCI is a combinatorially
challenging task that cannot be directly solved with standard meth-
ods. Finally, it can be beneficial to allow deeper exploration into de-
sign spaces, and provide designers with detailed insights of the entire
space. In optimisation terms, the optimisation landscape could be vi-
sualised to allow more informed choices. These improvements can
provide even better results during design-time placement, and aid de-
signers in creating better graphical interfaces. However, design-time

84 2 Improving Design-Time Placement on GUIs

placement has the general drawback that it caters to the user, and not
specifically to a user. Designs can not be tailored and customised to
individuals, and remain static once implemented. To address this lim-
itation of design-time improvements, in the next chapter, I investigate
the potential for use-time improvements to placement of elements in
graphical interfaces, by dynamically adapting designs to individual
users.

2.10 Acknowledgements

The research was conducted while I was a summer intern at the User
Interfaces Group, at Aalto University. The project received funding
from the Academy of Finland project COMPUTED and the European
Research Council (ERC) under the European Union’s Horizon 2020 re-
search and innovation programme (grant agreement 637991).

Apart from my co-authors, Daryl Weir and Antti Oulasvirta, I
would also like to thank Andreas Karrenbauer and Gilles Bailly for
their suggestions and comments, Olli Savisaari and Perttu Lähteen-
lahti for their assistance, and all study participants for their time and
engagement.

85

Chapter 3

Improving Use-Time Placement
on Graphical Layouts

The previous chapter addressed design-time challenges in improv-
ing the placement of elements on a graphical interface layout. It im-
proved the design exploration process for interface designers during
sketching activities. In this chapter, I discuss user-sided challenges,
and present a strategy for placing elements, such that interface lay-
outs can adapt themselves to individual users after they have been de-
ployed. In contrast to real-time adaptation, where an interface adapts
itself while being used, use-time (or just-in-time) adaptations are ex-
ecuted when the interface is visited, immediately before it has been
presented.

In domains where users are exposed to large variations in visuo-
spatial features among designs, they often spend excess time searching
for common elements (features) in familiar locations. This chapter con-
tributes computational approaches to restructuring layouts, and plac-

86 3 Improving Use-Time Placement on GUIs

ing features on a previously unvisited interface such that they can be
found quicker. To achieve this, four concepts of familiarisation are ex-
plored, inspired by the human visual system (HVS), to automatically
generate a familiar template for each user. Given a history of previ-
ously visited interfaces, we restructure the spatial layout of the new
(unseen) interface with the goal of making its elements more easily
found. Familiariser is a browser-based implementation that automati-
cally restructures webpage layouts based on the visual history of the
user, captured from users’ browsing activities. An evaluation of the
system with users provides first evidence favouring familiarisation.

The contents of this chapter are based on the following publication:

1. KASHYAP TODI, JUSSI JOKINEN, KRIS LUYTEN, and ANTTI

OULASVIRTA. Familiarisation: Restructuring layouts with visual
learning models. In Proceedings of the 2018 ACM Conference on In-
teractive User Interfaces, IUI ’18. ACM, New York, NY, USA, 2018

3.1 Introduction

This chapter addresses a common predicament in interaction with
graphical user interfaces— from blogs to banking and mobile apps—
users encounter a wide diversity of visual designs. Even when serv-
ing the same purpose, designs differ in terms of element positions,
colouring, images, and widget types. While visual uniqueness pro-
vides for identity and brand recognition, it also implies that users are
constantly confronted with learning, relearning, and accustoming to
navigating new structures and different styles. For the visual system,

3.1 Introduction 87

this poses a challenge to constantly adapt the use of visual attention.
By understanding how this happens, we could design and adapt inter-
faces automatically such that elements can be more easily found. This
could make interface ecologies more usable and enjoyable for users
who care less about brand identity.

3.1.1 Research Question

Our work is motivated by the observation that the added effort expe-
rienced upon encountering unfamiliar or atypical designs depends on
the cost related to visual search for new and unfamiliar visual layouts
[28, 69, 133]. Consider taking a familiar design and moving an ele-
ment to a different position. Users would first seek the element in its
expected place and, upon failing, continue with some search strategy
to locate the element that was moved, or simply give up. However, de-
signs are likely to differ in more than one feature, requiring ‘guessing’
of element positions, adding further frustration.

The potential benefits of placing interactive elements on a GUI at
use-time, based on a user’s familiarity, inspire the following research
question:

How can we adapt graphical interfaces for individual users’ by automat-
ically placing elements at familiar locations, at use-time, such that they are
consistent with a user’s mental model and enable faster visual recall?

To address this research question, this chapter investigates the con-
cept of familiarisation, and presents computational principles for re-
structuring unfamiliar designs to designs the user considers to be fa-
miliar.

88 3 Improving Use-Time Placement on GUIs

3.1.2 Familiarisation: Restructuring Graphical Inter-
faces using Visual Learning Models

We define familiarisation as a technique to adapt and restructure a new,
unvisited interface layout based on what a user has previous seen
and learnt. Formally, the goal of familiarisation can be defined as fol-
lows: Given a new design d, unfamiliar to the user, and a history of pre-
viously visited visual designs H (d /2 H), restructure d to minimize costs
to visual search to the user. By ’restructuring’ we refer to manipu-
lations to the visio-spatial layout, such as moving, resizing, and re-
colouring elements. We call techniques that achieve this familiarisation
techniques. These techniques exploit the capability of operating sys-
tems and browsers to change an interface design dynamically. Such
computer-driven familiarisation complements efforts at design-time to
ensure consistency and adherence to design standards and guidelines
[105, 123]. At the user-end, familiarisation exploits the known pro-
cesses of human visual system in visual search. This ensures that the
familiarised layouts are more usable due to predictable element loca-
tions and layout structures. While consistency enforced at design-time
can only approximate what the user population has experienced, en-
suring consistency through active familiarisation at use-time allows,
in principle, ’perfect consistency’ for an individual.

There are multiple competing principles on which familiarization
can be based, depending on how familiarity is defined. As these prin-
ciples can lead to different techniques of familiarisation, it is impor-
tant to explore their assumptions, implementations, and results. To
this end, we define and formalise four principles of familiarisation, in-

3.1 Introduction 89

Update HistoryLogging

Modelling

Design SpaceFamiliariser

Restructuring
New design

Previous
Designs

Compute familiar design

Restructure new design

Figure 3.1: The three stages for familiarisation. First, user’s data is
logged and stored as history. Each time a page is visited, the familiarity
models are updated, and the base design is computed. The new page
is then adapted to match the base design.

formed by theories of human visual system (HVS) and visual learning.
These are implemented in Familiariser, a browser-based system that
dynamically restructures interface layouts, at use-time, to make them
easier to use. Figure 2.1 illustrates the conceptual design of Famil-
iariser, consisting of three main components: 1. User history logging;
2. Modelling familiarity; 3. Restructuring a new page. Results from
our study indicate that familiarisation can reduce movement times by
over 10%, and also leads to over 20% lesser eye-gaze fixations.

3.1.3 Overview: Four Familiarisation Principles

Familiarisation techniques can be generally defined as functions that
take as input user history H and a new design d, and yield a restruc-
tured design d0: f(d,H) ! d0. In this chapter, we explore four princi-
ples, illustrated in Figure 3.2, with different theoretical underpinnings
and consequences to how restructuring operates and how they influ-

90 3 Improving Use-Time Placement on GUIs

ence results. Section ’Modelling Familiarity’ elaborates on each of these
principles in greater detail.

I. Frequency: The most straightforward approach is to simply take
the most frequently used design from H . Any new design within the
same domain would be restructured such that elements appear in
roughly the same places. While this design is likely to be recognizable,
and simple to implement, the approach does not take into account the
fact that most recent experiences are likely to dominate recall. Some-
thing that might have been frequently used in the past might be par-
tially forgotten and overshadowed by the most recently encountered
designs.

II. Serial Position Curve: The second principle implements the
well-known serial position function of long-term recall [42]. Extensive
empirical research on long-term and short-term memory has shown
that the first and the most recently encountered objects are better re-
called than ones in the middle. We implement a mathematical function
that describes the relationship between order and recall probability.
This is used to choose the most-likely-to-be-recalled design in H ac-
cording to this function. A limitation of this and the first approach is
that the visual features might not be adequately described by a single
design.

III. Visual Statistical Learning: The third principle is visual sta-
tistical learning (VSL), according to which visual attention relies on a
probabilistic internal model sensitive to the characteristics of the envi-
ronments they have encountered before. We implement this hypothe-
sis by building a statistical model of visual features in H . It is used to
estimate the ’most probable’ location of a given element. We then re-

3.2 Background 91

structure a layout, element by element, considering this function, and
finally align the elements so that they appear orderly.

IV. Cognitive Model: In our final technique, we train a cogni-
tive model of layout learning with H and use its prediction on an
empty canvas to predict the most likely positions of the elements of
d. The model simulates learning of visual positions, and generates
visual search patterns and times, given a layout and knowledge on
that layout [69]. As an input it requires H and associated visitation
durations, and optionally also considers element frequencies or rele-
vance of elements. In this, it is similar to the previous approach. How-
ever, the model generates the actual eye movement patterns and visual
search times, in addition to generating the memorability of location el-
ements. It also simulates forgetting of layouts that have been visited
only shortly and further back in time. This allows the model to be used
for evaluating automatically how the familiarised layout will impact
the user’s behaviour, as well as how the user learns the new layout.

3.2 Background

At its core, our work is situated within the domains of (1) visual search
modelling, (2) layout generation and restructuring, and (3) user inter-
face adaptation. We discuss prior literature that has dealt with these
themes, and draw comparisons to our work.

92 3 Improving Use-Time Placement on GUIs

3.2.1 Visual Search

Visual search requires the user to scan through a search array to find a
target [122]. This process is shaped by the limitations of the human vi-
sion and information processing. The area of clear visual acuity (fovea
is limited, and therefore in the case of UIs, the user is able to see only
partially its graphical elements at any given time. In visual search, the
human visual system is therefore faced with an attention deployment
problem: what visual element to attend next?

Attention deployment during visual search has been modelled us-
ing various computational models [78]. A popular computational
search model computes salience of regions in an image, and uses that
to predict what the most probably attended regions will be [66]. In
also implements an inhibition of return, where already searched regions
are not revisited. This search model can be called bottom up model,
because its attention deployment computation is based on features of
the visual field. Another approach, top down, emphasises the role of
the search task. In the case of UIs, the user probably has some task-
relevant information, which can be used to guide the search. A model
of visual search on keyboard layouts utilised this kind of approach,
modelling the impact of learning on visual search [69].

3.2.2 Layout Generation and Interface Restructuring

Automatic generation of layouts, and restructuring existing designs,
have received significant attention by researchers and practitioners.
One of the main rationales behind automatic generation is that it sim-
plifies or eliminates the design task, making it possible for program-

3.2 Background 93

mers or non-designers to create interfaces. Restructuring of designs
allow for systematic improvement in usability and aesthetics of inter-
faces. Prior works have often used rules and heuristics to generate
layouts that adhere to specific design guidelines [7, 19, 107, 108, 115],
or example-based retargeting by mining existing designs [81, 82]. Our
work situates itself in the area of model-based interface generation.
Model-based techniques [16, 19, 115, 132] tackle the design problem
by first abstracting the user interface as a set of models, which are then
used to steer the generation or restructuring. There have been several
prior systems, dating back to the 1980s, such as [9, 67, 103, 109, 146],
that apply model-based approaches to interface (re-)design.

The above techniques and implementations have largely consid-
ered the user population as a whole, and not individuals or groups
of users. There has also been some significant work done to address
different groups of users. Ability-based design [159] focuses on cre-
ating interfaces that take into account different requirements or re-
strictions, and optimise them towards specific abilities (e.g. [46, 127]).
Culture-based design [75] took into account differences among differ-
ent cultures, and used this as a basis for creating multiple designs of
the same interface, each suited to a specific group of users. While all
these works have considered a subset of the population, or specific
preferences and requirements of groups of users, they generally do
not address design on the per-user level, and also do not take into ac-
count individual users’ past experiences or usage history. In contrast,
with SUPPLE, Gajos et al. [43, 45] defined user interface generation as
an optimisation problem that took a set of user interactions as input,
and used this to generate an optimal solution. By doing so, the system

94 3 Improving Use-Time Placement on GUIs

could take into account specific user requirements and abilities, and
create individualised interfaces for each user. HIGHLIGHT [102] en-
abled re-authoring of existing websites based on tracing how the user
interacts with the site, and created mobile versions customised to the
user tasks and mobile devices. UNIFORM [104] bears a lot of resem-
blance to our work, as it takes into account a user’s history to auto-
matically generated remote control interfaces. UNIFORM differs from
our work since it does not restructure existing interfaces, yet focuses
on generating consistent user interfaces that provide access to exist-
ing functionalities on new platforms. Additionally, the user history is
limited to one source design, and the work focuses on the engineering
aspects of restructuring an interface to match the source, and not on
the systematic selection or generation of source designs from an ex-
tended history. The general approach adopted by previous works on
per-user model-based interface generation has been to model the user
as a one-time activity, before generating an optimised interface. Famil-
iarisation, on the other hand, captures the complete user history, and
each time a new interface is encountered, it generates a just-in-time re-
designed interface based on an updated familiarity model. Interfaces
can thus evolve over time and usage, and (re-)design becomes a con-
tinuous activity.

3.2.3 Run-time Adaptation of Interfaces

As highlighted above, familiarisation presents an approach to adapt
and restructure interfaces at runtime. Such an approach falls under
the category of ‘adaptive user interfaces’—interfaces that can adapt or

3.3 Modelling Familiarity 95

modify themselves while being used. There have been several works
on adaptive UIs previously. Past systems have used different criteria
for adapting interfaces. For example, the Walking User Interface in
[159] adapted based on whether the user is stationary or walking. In
the [44], Gajos presents UIs that adapt to users’ current tasks. In con-
trast to use scenario or current task, Familiariser adapts an interface
layout based on users’ history, and exposure to previous interfaces be-
longing to the same domain. A common criticism and shortcoming of
adaptive UIs is that unpredictability and cost of adaptation can negate
the benefits provided [49, 84]. Since we focus on adapting newly vis-
ited interfaces that the user has not previously used or learnt, it does
not suffer from these drawbacks. Thus, by incorporating model-based
design generation, and just-in-time interface adaptation, our work at-
tempts to leverage recall and visual learning, and provide users access
to interfaces tailored to their expectations and mental models.

3.3 Modelling Familiarity

What we call ‘familiarity’ is a complex cognitive phenomenon influ-
enced by several factors related to how people learn visual search. We
approach the problem by exploring progressively sophisticated prin-
ciples inspired by theories of HVS and human memory.

At the highest level, these principles break down to two groups:
(a) page-wise familiarity; (b) feature-wise familiarity. In page-wise fa-
miliarity, an entire layout (e.g., webpage) is recognised as one unit. It
is assumed that users learn and recall entire pages and their visual lay-
outs. On the other hand, feature-wise familiarity considers high-level

96 3 Improving Use-Time Placement on GUIs

features on webpages as individual units. For example, logos, naviga-
tion menus, and search-boxes, can be considered as features, and users
learn and recall these recurring features across different pages. Based
on these two cases, we explore four principles:

3.3.1 Principle I: Frequency

This is the most straightforward page-wise approach to defining famil-
iarity. It is informed by the frequency effect: frequently encountered
items are more likely to be recalled than less frequently encountered.
More specifically, the number of encounters directly affects both re-
trieval time and retention probability: more frequently practised items
are recalled faster and easier [5]. The interface (webpage) that has been
encountered the most number of times (i.e., most frequently visited),
and for the longest durations, is assumed to be the most familiar to
the user, and is thus used as the base design to which new pages are
familiarised:

fpage = nvisits ⇤ taverage (3.1)

where,
fpage = familiarity score of a page;
nvisits = number of visits;
taverage = average duration of visits (in seconds).

The result of frequency-based familiarisation in a one-to-one retar-
geting of the new page to the most-frequently visited page.

3.3 Modelling Familiarity 97

3.3.2 Principle II: Serial Position Curve

While frequency of usage can be a reasonable method to predict the
most familiar interface in simple scenarios, as user histories get larger
over time, this is susceptible to failure. Usage-based aspects such as
first exposure to a page, recency of visits, and intervals between visits,
are not considered by the first model. Firstly, not only frequency of
rehearsals, but also their recency, affects recall time and probability:
recently encountered and practised items are recalled faster and more
probably [5]. In addition to recency, there is also an effect of primacy,
where items that have been encountered first are better remembered
than later items [59]. Together, the primacy and recency effects create
a U-shaped curve (a serial position curve). It maps items encountered in
the past to probability of recall: the first and last items are more likely
to be recalled better.

This leads to a page-wise approach that considers:

1. Frequency (v): The frequency of visits to a given page, denoting
how often a page is visited.

2. Recency (r): The recency of visit to a page, denoting when the
page was last visited.

3. Primacy (p): The order of visits to different pages, or the sequence
in which unique pages are encountered.

For each of these, scores are calculated for every page in the history
by ranking them. By aggregating scores for all factors, for each page,
we can calculate a “familiarity score” for every page, and hence de-

98 3 Improving Use-Time Placement on GUIs

termine the most familiar interface. Thus, we compute the following
scores:

1. Frequency Score (Sv): This is the ratio of the visit count for the
given page to the total visit count of all pages in the history.

Sv = npage/ntotal (3.2)

where Sv is the frequency score, npage is number of visits to page,
and ntotal is total number of visits to all pages.

2. Recency Score (Sr): This takes into account the decaying aspect of
memory. The number of other pages that are visited since the
user last visited the given page negatively influences the famil-
iarity. The score is normalised (most recently visited page has a
score of 1), and this reduces as recency increases

Sr = 1� rpage/ntotal (3.3)

where Sr is the recency score, rpage is recency of a page, and ntotal

is total number of visits to all pages.

3. Primacy Score (Sp): Pages that are encountered first tend to be
better recalled than later pages. This effect is known as primacy,
and the primacy score takes this into account, where earlier pages
have a higher score. The score is normalised (first visited page
has a score of 1), and subsequently reduces for following pages.

Sp = 1� ((ppage � 1)/npages) (3.4)

3.3 Modelling Familiarity 99

where Sp is the primacy score, ppage is visit order number for the
page, and npages is number of unique pages visited.

By aggregating these scores, we derive the familiarity score for a
page:

Fpage = ↵ ⇤ Sv + � ⇤ Sr + � ⇤ Sp (3.5)

where Fpage is the familiarity score for the page, ↵, �, � are weights for
the three factors, and ↵ + � + � = 1.

In our implementation, we assign equal weights to frequency and
recency, and suggest that order has a lower effect on familiarity, thus
assigning it a lower weight. Thus, the values we use are: ↵ = � = 0.4, �
= 0.2.

The page with the highest familiarity score (max Fpage) is consid-
ered to be the familiar page for a user, and is selected as the basis for
familiarisation. The result of serial-position curve-based familiarisa-
tion in a one-to-one retargeting of the new page to the selected familiar
page.

Figure 3.3 presents a sample scenario, where a user visits four
unique pages multiple times. Figure 3.4(a) illustrates evolution in
recorded usage metrics and scores, as the user visits different pages,
and page selection results for principles I and II.

100 3 Improving Use-Time Placement on GUIs

I. Frequency II. Serial Position
Curve

III. Visual Statistical
Learning

IV. Cognitive Model

Figure 3.2: An illustration of the four principles for modelling famil-
iarity. (I) relies exclusively on visit frequency; (II) takes time into ac-
count; (III) considers positional (xy) information; (IV) uses a cognitive
model of visual search.

3.3
M

odelling
Fam

iliarity
101

Time
t1 t2t0

Page Designs:

User History:

1

1 1 1 1 1

2

2 2 2 2

3

3 33

4

44

Figure 3.3: A sample scenario with 4 different page designs. The user history shows a time-
line of page visits (for simplicity, uniform visit durations are assumed across pages). Model
results from applying the familiarity principles at two timestamps (t1 and t2) are illustrated in
Figure 3.4.

102 3 Improving Use-Time Placement on GUIs

Selected by
I and II

Selected by I
Selected by II

Search Social IconsMain MenuLogo

(a) Usage Metrics and Scores

(c) Activations (for IV)(b) Probability Distribution Maps (for III)

Search

Social IconsMain Menu

Logo

Timestamp Page Frequency
(v)

Recency
(r)

Primacy
(p)

Frequency Score
(Sv)

Recency Score
(Sr)

Primacy Score
(Sp)

Familiarity Score
(Fpage)

t1

1 3 0 1 0.667 1.000 1.000 0.867

2 1 4 2 0.167 0.333 0.667 0.333

3 1 2 3 0.167 0.666 0.333 0.400

4 0 - - - - - 0

t2

1 5 4 1 0.357 0.714 1.000 0.629

2 4 0 2 0.286 1.000 0.750 0.664

3 3 3 3 0.214 0.786 0.500 0.500

4 2 2 4 0.143 0.857 0.250 0.479

Figure 3.4: Results obtained by applying the four different principles
to the user history in Figure 3.3. (a) Evolution of metrics and scores at
two timestamps (t1, t2), and page selection outcomes. (b) Computed
probability distribution maps for key features at t2. Red ⇥ symbols
indicate the selected position for each feature. (c) Activations for fea-
tures at t2. Circled activations indicate the predicted positions for each
feature.

3.3.3 Principle III: Visual Statistical Learning

Here, we take into account the statistical frequency with which differ-
ent design features occurred in history H . This hypothesis is based
on theories of visual statistical learning [25], according to which visual

3.3 Modelling Familiarity 103

search strategies are sensitive to the statistical structure of the visual
environment.

A feature is defined as a high-level semantic element, and can be
composed of multiple low-level elements. For example, a website’s
logo is a feature, and could be composed of an image and a link el-
ement. By aggregating the commonly found positions of each fea-
ture among the visited pages in a user’s history, we can determine
the “most familiar” characteristics for each feature, and use this as the
familiar template. Unlike in the previous principles, the resultant tem-
plate design here is not a single page from the history, but a feature
mesh consisting of familiar features from multiple pages in the user’s
history.

To generate this feature mesh, or template, we first generate spa-
tial probability distribution maps for each encountered feature. In
these maps, for pages in the history, every for every pixel occupied
by a particular feature, the spatial probability is incremented. Fea-
tures are weighed according to familiarity scores (Fpage) of each page
(from #2). Thus, a feature appearing on a more familiar page has a
higher influence on the probability distribution. For each feature, the
value (position) with the highest probability is selected to create the
template consisting of all detected features. Figure 3.4(b) illustrates
the computed probability distribution maps and selected positions for
different features, for the given scenario. The result of visual statistical
learning-based familiarisation is a restructuring of the new page to the
computed template design, consisting of positions for the matching
features.

104 3 Improving Use-Time Placement on GUIs

3.3.4 Principle IV: Visual Sampling Based on a Genera-
tive Cognitive Model

Here, a generative approach is used, where a model of visual search
is used to generate gaze fixations as the simulated user is searching
targets on a layout. The simulation integrates models of eye move-
ments, visual short-term memory, and associative long-term memory,
and proposes that visual search is the interaction of these three re-
sources [69]. Given a user history with layouts, including locations
of elements on the layouts, the model generates eye movement pat-
terns as it simulates human-like visual search on the layouts. Using
the model of eye movements [126], the simulation encodes elements
on the layout until it has found the target. For each element, the en-
coding time is

Te = K · [�log(f)] · ek·✏, (3.6)

where f is the frequency of the object, either supplied externally
to the model or assumed to be uniform, ✏ is the distance of the target
from current eye fixation, and K and k are scaling constants, adapted
from the literature [126]. Te increases exponentially as the target is
further from the fixation, but the visual system may compensate this
by initiating a fast eye movement to gaze closer to the target, with
movement time of

Ts = tprep + texec +D · tsacc, (3.7)

where tprep, texec, and tsacc are constants from literature [126] and D is

3.3 Modelling Familiarity 105

the movement amplitude.

After the eye movement, the target needs to be encoded (3.6). How-
ever, if the encoding time is less than tprep, then the target is encoded
without the eyes moving. This creates an eye movement model where
the eyes move only when the target is too far to encode from the cur-
rent gaze point.

In addition to visual search, the model simulates learning of lay-
outs by using an activation-based associative memory model [4], its
location is stored in the memory storage. An activation strength of an
association can be calculated based on the number of times the target
has been found:

Bi = ln(
nX

j=1

t�d
j), (3.8)

where tj is the time since the j:th time of finding the target i, and
d is a decay parameter, set from literature [69]. As the model learns
the layout, it can use the associative memory to recall the position of
the target without having to visually search for it. The model is able
to recall the position of the target, if Bi > 0, with noise added from
normal distribution [69]. Recall time is:

Ti = Fe�fBi , (3.9)

where F and f are scaling constants, set based on literature [69].

Longer history with a layout results in higher associative acti-
vations, and faster, more expert-like performance in finding targets.
From the activations, the model can predict where the user will gaze,

106 3 Improving Use-Time Placement on GUIs

given a layout and user history. Figure 3.4(c) illustrates activations,
and predicted positions, for the given scenario. The result of this
generative model-based familiarisation is a restructuring of the new
page to the computed template design, consisting of positions for the
matching features.

3.4 Familiariser: System Overview

1. Parse page

2. Categorise page

3. Update history

4. Compute template

5. Restructure page

Page
Requested

Original
Page Displayed

Familiarised
Page Displayed

Familiarisation
Triggered

Figure 3.5: Familiariser Pipeline: When a page is requested, it is
parsed and categorised, and the history is updated for visited pages.
Once familiarisation is triggered, the template design is computed us-
ing an HVS principle, and restructuring is instantiated via layout op-
timisation prior to rendering on a web browser.

We implemented the concept of familiarisation in Familiariser, a
browser-styled application that allows users to visit webpages and en-
ables access to familiarised versions, adapted towards each user. As

3.4 Familiariser: System Overview 107

illustrated in Figure 3.5, when a user visits a webpage, the following
pipeline is executed:

1. Parse page: The page source (HTML) is parsed by the system.
Key elements, representing high-level features, are detected and
labelled.

2. Categorise page: The page is classified into a general website
category (for example, shopping, banking, travel, etc.).

3. Update history: If the visited page does not exist in the history,
it is added; if it was previously visited, the corresponding entry
in the history is updated for the page. Additionally, familiarity
scores, described in the previous section, are updated for every
page in the user history.

While familiarisation is disabled, the pipeline ends at this point,
and the original page is displayed as is. Once familiarisation is
triggered, the following steps (3 and 4) are executed to familiarise
the page.

4. Compute template design: The history is filtered for pages be-
longing to the same category. Based on this, we compute the
template design, to be used as the basis for restructuring the new
page.

5. Restructure page: The new page is restructured using positional
values of matching features from the template, and by reposi-
tioning the corresponding elements on the visited page. Over-
laps may occur in the restructured page. Familiariser resolves

108 3 Improving Use-Time Placement on GUIs

any such overlaps while attempting to best maintain relative
alignments of elements on the page. This ensures a valid layout,
without obscuring or omitting any contents. The familiarised
page is finally displayed to the user.

Figure 3.6 and 3.7 illustrates two examples of results obtained by Fa-
miliariser, given a user history and original (unfamiliar) page, for each
of the four presented principles.

In the remainder of this section, we describe the various compo-
nents of the system in greater detail.

3.4.1 Page Parsing

A feature can be defined as a task-level element [151]. They are action-
able elements, with a well-defined purpose, such as the logo, search
bar, buttons or icons to login and access a user account, or the shop-
ping cart on e-commerce sites, etc. Features can be composed of sev-
eral low-level HTML DOM elements. For familiarisation, it is neces-
sary to first detect these features on a given page. Prior works have ex-
plored element detection when underlying sources were not available.
Prefab [34] presented a pixel-based approach to reverse-engineering
the GUI. Sikuli [165] allowed users to take screenshots of widgets and
elements, and use these for search and automation of visual interfaces.
For webpages, however, the underlying source files are openly accessi-
ble. Previously, Webzeitgeist [81] used CSS selectors to detect common
features. Familiariser parses the underlying DOM tree of a page, and
analyses DOM tags, identifiers, and linked CSS classes, of elements to
automatically detect features on the page. We use partial string match-

3.4 Familiariser: System Overview 109

I. Frequency II. Serial Position Curve

III. Visual Statistical Learning IV. Cognitive Model

History

Model ResultsOriginal Page

Figure 3.6: A visual comparison of the results after familiarising a
page using the four presented principles. For a given user history,
when a new page is visited, each of the models may produce varying
results.

110 3 Improving Use-Time Placement on GUIs

I. Frequency II. Serial Position Curve

III. Visual Statistical Learning IV. Cognitive Model

History

Model ResultsOriginal Page

Figure 3.7: A second example of results from restructuring a new
page. In this case, the user has visited additional pages, indicated in
the updated history. The template is recomputed, and used to create
familiarised results.

3.4 Familiariser: System Overview 111

ing to detect commonly-used names, and map them to corresponding
features. A feature can either be a leaf node in the DOM tree, or a
compound element consisting of several smaller elements. The detec-
tion of features relies on appropriate naming and tagging of under-
lying HTML elements, and this can be a limiting factor in finding all
matching features across different pages. Feature recognition could be
improved by employing other computational methods, such as image
recognition or machine learning, but this is out of the scope of this
work.

3.4.2 Page Categorisation

A category defines a group of pages that semantically or functionally
belong together, and are used in similar ways or for similar tasks. Since
features on different categories of websites tend to have different prop-
erties or aesthetics, it is important to segregate them. Therefore, each
page is assigned a textual category label once it has been parsed. Fa-
miliariser uses HTML tag annotations to categorise visited pages into
general categories. Automatic categorisation can be improved by us-
ing other strategies such as topic modelling [17], or by matching fea-
tures found across pages.

3.4.3 Usage History Updates

For each user, page visit history is recorded, and usage-based metrics
are updated each time new pages are visited. For each page, a unique
entry in the history is maintained, and includes information related
to time spent on the page (duration), frequency of visits, recency, and

112 3 Improving Use-Time Placement on GUIs

order of visits. When an existing page in history is re-visited, the fre-
quency (fpage) is incremented, and the recency of that page is reset such
that it is the “most recent” page (i.e. rpage = 0). For every other page
in the history, the recency (rpage) is incremented, thus decreasing the
recency score (Sr).

3.4.4 Template Computation

All pages in the history are considered to compute the familiar layout
design. For web browsing specifically, different categories of websites
have distinctly different features. To avoid mismatch in domain, web-
site categorisation can be performed as an intermediate step, and only
pages within the same category as the currently-visited page are con-
sidered. For example, if the user intends to visit a shopping website,
only pages from the shopping domain are considered while comput-
ing the base layout design.

Principles I and II consider a single page as the template. Famil-
iarity scores are calculated accordingly, and the highest-scoring page
is selected. Matching features are extracted from the template, and
their xy positions are used for the base layout design. Principles III
and IV compute templates based on all pages in the user history. For
principle III, probability distribution maps are created for features de-
tected on all visited pages. Using these, the most likely position for
each feature is estimated, resulting in a template where all feature are
located appropriately. For principle IV, activation points for each fea-
ture are computed. The point with the highest activation, for a feature,
is predicted to be the most familiar position, and hence used for the

3.4 Familiariser: System Overview 113

template.

3.4.5 Target Page Restructuring

The template that is computed is used to restructure the newly-visited
page. Features on the target page are matched to those on the template
design, and repositioned accordingly. In [82], retargeting occasionally
resulted in truncated or cropped content due to size mismatch. In our
approach, while repositioning, dimensions of the original elements are
maintained so as to avoid truncation of contents. This can however
result in some overlapping or occlusion of elements.

Overlap Resolution

Overlaps are resolved by setting up a series of overlap-redressal rules.
Examples of rules used in Familiariser are as follows:

1. Left-alignment or top-alignment of two (or more) elements
should not be violated. If this is violated, a penalty is applied.

2. Movement of any element from its preferred (horizontal) loca-
tion entails a penalty.

3. The vertical or horizontal sequence of any pair of elements
should be honoured.

4. The canvas width should not be changed. The height may be
changed if needed.

114 3 Improving Use-Time Placement on GUIs

The rules are implemented using any standard integer-linear program-
ming solver, resulting in a valid layout without overlaps.

3.4.6 Triggering Familiarisation

During the initial stages of browsing, the system updates its model,
and displays the page in its original form. As users visit different
pages, they gradually learn visual layouts of these, thus increasing
chances of recall during future visits. Once a user is fluent with a small
set of pages, familiarisation is triggered, and newly visited pages are
adapted to match the computed template design. However, we need
to determine the ideal moment to trigger familiarisation, to make it
effective. There is a trade-off between familiarising too early and too
late. If triggered too early, users may not have learnt visited pages suf-
ficiently, thus future pages would not benefit from adaptation. On the
other hand, if familiarisation is delayed, then users might have already
been exposed to a large number of diverse designs, thus making recall
harder. For the purpose of our study, we determined (by trial-and-
error) that enabling familiarisation after 25 page visits was favourable,
given that the number of unique pages was less than or equal to 5. For
future systems, familiarity scores can be used to empirically determine
when to trigger familiarisation, or this could be customisable per user.

With automatic (always-on) familiarisation, pages are automati-
cally adapted when they are requested. Familiariser also supports
manual (on-demand) familiarisation, where users can explicitly re-
quest for a familiarised version of page. Here, the original page is dis-
played by default, and a familiarised version is rendered only when

3.5 Architecture and Implementation 115

History Logging

Template Generation

Page Restructuring
New page Familiarised page

Familiariser

Figure 3.8: Main components of the Familiariser system. As users visit
pages, their history is logged. This is used to model visual search and
generate a template for the user. When a new interface is visited, it
applies this template to restructure the page.

demanded. This is similar to how web services such as translation
and reader-friendly modes enable users to access adapted versions of
a page. Manual familiarisation obviates the need for a determining a
fixed point at which adaptations are triggered.

3.5 Architecture and Implementation

The front-end of Familiariser is implemented in Swift, on MacOS 10.13,
as a standalone browser-styled application. In the back-end, the sys-
tem consists of 3 main components: logging user history, generating
a template, and restructuring the page, illustrated in Figure 3.8. The
details for each of these follows.

116 3 Improving Use-Time Placement on GUIs

3.5.1 Logging User History

The system maintains a persistent history file for the user. Every
time a new page is visited, custom JavaScript code parses the page
source, and converts the page into a flattened JSON file. The JSON
file is parsed to construct a webpage object with the following internal
model:

1. URL (String): Unique address identifying the website.
2. Category (String): The general category of websites to which the

page belongs, for example, shopping, banking, travel, social net-
works, etc.

3. Page Elements (Array): Content elements appearing on the web-
page. Each element contains absolute (xy) positions as they ap-
pear on the browser, feature name, and other element-specific
properties, such as tags and CSS styles, required to recreate the
page.

4. Primacy (Integer): The visit order number indicating the primacy
of the page.

5. Frequency (Integer): Number of times the page has been visited.
6. Recency (Integer): A number indicating how many other pages

have been visited since the last visit.

When the user completes a page visit, either by navigating to a differ-
ent page or by quitting the application, a new page record is added
sequentially to the user history. This record contains an identifier for
the webpage, a pointer to the internal webpage object, a timestamp
indicating when the page was visited, and time duration of the visit.

3.5 Architecture and Implementation 117

This sequential history contains all information required to model a
user’s familiarity.

3.5.2 Generating a Template

When familiarisation is triggered, the system filters the history for all
pages belonging to the same website category, and creates a familiar
template unique to each category.
For frequency-based familiarisation (I), the system finds the webpage
with highest frequency in the user history, and selects it as the tem-
plate.
For serial-position curve (II), it calculates the familiarity scores for each
webpage in the history, and selects the page with the highest score.
For visual statistical learning (III), the system initialises an empty 2 ⇥ 2

array, with pixel dimensions of the largest webpage in the history.
It iterates over all pages in the history, to create probability distribu-
tion maps by assigning appropriate pixels a weight, when a feature is
found. Next, for each feature, it iterates over the respective map, and
finds the pixel with the highest value. The final template consists of
(x,y) points with highest probabilities for all found features.
The cognitive learning model(IV) is implemented using Common Lisp.
Each time familiarisation is required, a CSV file containing relevant
history information, including access timestamp, duration, and linked
JSON file name, is generated. The CSV file and required JSON files for
all webpages are passed as input to the learning model. As output, the
model generates a new CSV file containing activation points (x,y) for
all detected features, along with confidence values, and returns this to

118 3 Improving Use-Time Placement on GUIs

Familiariser. Familiariser uses this to select the desirable positions for
features, to generate the template.

3.5.3 Restructuring the Page

Given the template, Familiariser automatically restructures a newly-
visited page by repositioning matching features at locations founds on
the template design. Any unmatched features are then positioned at
their original location. Next, overlaps in layout elements are resolved
by passing a file containing element positions to a Java application.
The application applies overlap-redressal rules to each element. We
use an IBM CPLEX linear programming solver to optimally resolve
any detected overlaps. The solver returns a corresponding file with re-
sultant element positions. This is used by Familiariser to generate the
final valid layout, which is then displayed to the user in the browser-
based application.

3.6 Evaluation

The goal of our evaluation is to verify the concept of familiarisation,
and the presented system. We seek to answer the question: Does famil-
iarisation improve performance in web browsing for end-users? To this end,
we conducted a comparative user study, and report on quantitative re-
sults. We compared original (unmodified) designs against familiarised
designs in a study where users were asked to point-and-click on dif-
ferent features on the displayed page. We used the visual statistical
learning principle (principle III) for familiarisation as these selection

3.6 Evaluation 119

tasks were quite brief in duration. As dependent variables, we anal-
ysed visual search time, approximated by pointing time, and number
of eye-gaze fixations per target feature. Comparing these two cases
enables us to evaluate the potential effects of familiarisation during
real-world usage. For the test case, we chose the domain of shopping
websites, a frequently used category of webpages that are also plenty
in number. These websites typically contain similar features yet vary
vastly in their layouts and presentation of these features. This makes
them a good test candidate for Familiariser, and provides a realistic
use scenario for the study.

3.6.1 Study Tasks

For the study, participants were given the task of selecting (clicking
on) a feature element on the displayed webpage, in a browser-based
application. Webpages were selected randomly, from a dataset of 30
shopping sites. The target feature was also selected randomly from
the page, and included commonly occurring elements, such as logos,
navigation menus, search boxes, among others. Participants were re-
quested to perform tasks quickly yet accurately as possible, and avoid
unnecessary pauses. As tasks were performed, the software logged
mouse movements, click events, and eye gaze information, including
eye position (averaged) and fixations.

3.6.2 Apparatus

A 13" MacBook Pro with Retina Display (2560-by-1600 pixels), run-
ning MacOS 10.13, was used for the study. The browser-based Famil-

120 3 Improving Use-Time Placement on GUIs

iariser software was displayed as a full-screen application. We selected
30 shopping websites to create the dataset, excluding commonly-used
shopping pages to avoid bias. Webpages used in the dataset were ren-
dered offline to avoid delays. Tasks were completed using the in-built
trackpad. All cursor motions and events were logged by the study
software. For eye-tracking, an EyeTribe Tracker1 was used, along with
a custom Python program to log gaze positions and fixations.

3.6.3 Participants

We recruited 16 participants, aged 21 to 36 (mean 29), for the user
study. Participants reported to have no visual impairments, or cor-
rective glasses. All participants reported frequent web usage (daily),
and also reported recent exposure to shopping websites.

3.6.4 Method

During the experiment, participants were exposed to a set of differ-
ent websites. Before a webpage was displayed, they were presented
with the task of selecting (clicking on) a particular feature element (e.g.
logo, main menu, search box) on the page. The target feature element
was selected at random from the page to be displayed. The timed trial
started once the participant confirmed they were ready, by clicking
on a confirmation button. This button was consistently placed at the
centre of the screen, ensuring a constant starting point for the cursor
during all trials. Figure 3.9 shows screenshots of this setup.

1www.theeyetribe.com

3.6 Evaluation 121

Task Stimulus Page Displayed

Figure 3.9: Screenshots from one trial of the study. The user is first
shown a stimulus, with the task description. The task is started when
the user clicks on the “Ready” button, thus positioning the cursor on
the screen centre. A page is then displayed; the task is completed when
the user successfully clicks on the target.

The experiment was divided into two phases: Learning Phase and
Test Phase, as described below.

1. Learning Phase

For each participant, the system selected 5 webpages, at random, from
the dataset of 30 pages, for the learning phase. The learning dataset
thus varied for each participant. During each trial, a page from this
subset was selected at random, and the participant was asked to point
and click at a randomly chosen feature on the page. A total of 25 trials
were performed during this phase, and this was used to construct the
’usage history’ for the participant.

122 3 Improving Use-Time Placement on GUIs

2. Test Phase

Once the participant had experienced this subset of pages in the train-
ing phase, the experiment moved on to the test phase. The 5 pages
used in the learning phase were stored in the user history, and ex-
cluded from the test dataset. Similar to the learning phase, participants
again browsed to randomly selected pages, and were asked to select
a target feature on the page. During the test trials, either the origi-
nal (unmodified) page or a familiarised version was presented to the
user, chosen at random. All participants were exposed to both con-
ditions, original and familiarised, resulting in a within-subject study
design. Participants performed a total of 100 timed trials during the
test phase.

The average duration of the study was approximately 30 minutes
for each participant.

3.6.5 Results

We created a linear mixed model with search time as dependent vari-
able, page type (Original vs. Familiarised) as fixed independent vari-
able, and participant id and page URL as random variables. Grand
mean search times were Original = 2.8 seconds and Familiarised = 2.5
seconds. The difference was statistically significant, t(663) = 5.3, p <

.001, with model F (1, 663) = 28.5, p < .001. In standardised units, the
benefit of familiarised layout was � = 0.35.

We compared similarly the number of fixations per target. Grand
mean fixation counts were Original = 3.4 and Familiarised = 2.6. The
difference was statistically significant, t(596) = 4.7, p < .001, with

3.7 Discussion 123

Visual Search Time Fixation Count
Original 2.8 seconds 3.4

Familiarised 2.5 seconds 2.6

Table 3.1: Summary of results for average visual search time and fixa-
tion count per target feature.

model F (1, 596) = 22.3, p < .001. In standardised units, the benefit
of familiarised layout was � = 0.35.

The above results indicate that familiarisation improved user per-
formance by reducing both visual search time and number of gaze fix-
ations. Our study evaluates familiarisation using the visual statistical
learning principle. A comparison of all four principles requires a more
extensive study, and is left as subject of future work.

3.7 Discussion

3.7.1 Summary

Our work on familiarisation of visual designs situates itself in the
field of automatically generated user interfaces that adapt to indi-
vidual users. The cost of adaptation is often a concern for adaptive
user interfaces. Our work circumvented this as familiarisation restruc-
tures only new and unfamiliar designs, at use-time, instead of con-
tinuously adapting or modifying frequently-used layouts in real-time.
One could criticise our approach for compromising brand identity, or
undermining the designer, by modifying designs. However, we argue
that usability of an interface supersedes these aspects for the end-user.

124 3 Improving Use-Time Placement on GUIs

Additionally, Familiariser addresses this by allowing users to option-
ally view either original or familiarised versions of designs. Commer-
cial browsers have also used such techniques to improve usability of
webpages. For instance, ‘reader-friendly mode’ on browsers allows
users to switch between the original page and a version enhanced for
reading.

Familiarisation deals with concepts of recall and visual learning to
make interfaces appear closer to each user’s expectations. We explore
four principles of familiarity, inspired by the human visual system,
and grounded in literature. Familiariser implements these in an end-
user system that captures users’ history, and restructures newly vis-
ited pages based on automatically generated familiar layout designs.
Results from the empirical study provide evidence for our approach.
Familiarisation significantly improves visual search time by over 10%,
and reduces the number of fixations by over 23%, while searching for
features on a given design.

3.7.2 Revisiting the Research Question

To improve placement of elements on GUIs, this chapter aimed to in-
vestigate user-sided techniques. The research question, as stated in the
introduction, is:

How can we adapt graphical interfaces for individual users’ by automat-
ically placing elements at familiar locations, at use-time, such that they are
consistent with a user’s mental model and enable faster visual recall?

To this end, I presented familiarisation as an approach to automati-
cally adapting user interfaces at use-time. By logging user history, and

3.7 Discussion 125

modelling familiarity based on visual search, we could automatically
adapt and improve placements on graphical layouts, in a principled
manner, for each user.

The main technical contributions of this chapter towards realising
the bigger goal of improving GUI layouts are:

1. Familiarisation principles to compute a familiar template based on
a user’s visual history.

2. The familiarisation pipeline to log user history, model familiarity,
and restructure unvisited layouts.

3. Familiariser—a browser-based implementation that records user
history, applies the principles to generate a template, and auto-
matically restructures webpages to generate a valid familiarised
layout.

Our evaluation with users illustrates the benefits of familiarisation
on user performance during a typical web browsing task.

3.7.3 Principles for Use-Time Placement

The key design principles derived from this work, towards the goal of
improving placement on GUIs at design-time are:

1. Capture detailed usage history for each user by logging interac-
tions.

2. Model visual familiarity by taking into account different statis-
tical and perceptual aspects of usage.

126 3 Improving Use-Time Placement on GUIs

3. Avoid cost of adaptation by only modifying new, unvisited lay-
outs at use-time.

4. Ensure completeness and legibility of modified UI layouts by
resolving any structural inconsistencies before rendering.

3.7.4 Limitations and Next Steps

There are certain limitations for applying familiarisation universally,
as it requires (1) logging of a user’s history of seen layouts, (2) detailed
information and representation of layouts, (3) just-in-time computa-
tions of templates, and (4) instantiation of page restructuring in run-
time, prior to rendering it on a display. By exploring a range of prin-
ciples for familiarisation, we provide alternatives that enable systems
to circumvent some of these limitations. The basic frequency-based
approach (principle I) is straightforward to implement, and requires
minimal user history information. Serial-position curve (II) requires
some additional usage information, and requires calculations of vari-
ous scores to select a page as the template. The feature-based princi-
ples (III and IV) require detailed information about the interface lay-
out, and are computationally more expensive, but offer more accurate
representations for a user.

While this chapter, and our implementation, focuses on reposition-
ing of features, future familiarisation efforts can apply our work to
address other interface aspects, such as colours, fonts, and other visuo-
perceptual properties. Such properties are often position-agnostic, and
thus for these page-wise familiarisation (I or II) is preferred. Apart
from addressing additional interface properties, usability and expe-

3.8 Acknowledgements 127

rience with user interfaces can be further improved. Future systems
can explore a dual-optimisation strategy, where the familiarity model
can be combined with other predictive models of human perception.
Additionally, more interfaces can be covered by applying the concept
of familiarity to a variety of mediums (digital, physical, hybrid). For
instance, it can be possible to familiarise physical interfaces, adapt-
ing them to resemble previously encountered digital or physical in-
terfaces. Finally, by providing a formal model of familiarity, we can
implicitly gain an understanding of “unfamiliarity". This opens up
possibilities of other applications such as ‘unfamiliarisation’ or diver-
sification of interfaces. This could encourage alternative design goals
such as exploration, or be used to draw users’ attention to certain ele-
ments.

3.8 Acknowledgements

A part of this research was conducted during my second internship at
the User Interfaces Group, at Aalto University. The project was par-
tially funded by the Academy of Finland project COMPUTED and
the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement
637991).

Apart from my co-authors, Jussi Jokinen, Kris Luyten and Antti
Oulasvirta, I would also like to thank thank Niraj Damaya for code
related to overlap resolution, Markku Laine for his useful comments,
and study participants for their time and involvement.

128 3 Improving Use-Time Placement on GUIs

PART II

Facilitating Placement on
Post-WIMP User Interfaces

Post-WIMP user interfaces [149] go beyond the typical graphical inter-
faces by integrating richer interactive capabilities into the interface. Typical
examples of such interfaces include gestural interfaces, tangible UIs, multi-
modal interfaces, and ubiquitous computing. In the second part of this disser-
tation, I discuss some of the challenges for post-WIMP UIs, and investigate
how we can facilitate, or enable, the placement of interactive elements on such
interfaces.

130

131

Chapter 4

Facilitating Placement of
Interactive Electronics on
Post-WIMP Interfaces

In the first part of this dissertation, I discussed strategies for placing
interactive elements on graphical interfaces. The focus was on im-
proving GUI interface layouts, to improve their aesthetics and perfor-
mance. In the next part, I address placement issues related to post-
WIMP interfaces. Such interfaces often add a physical component by,
for example, applying novel interaction techniques, or augmenting in-
terfaces with interactive electronic elements such as sensors and actu-
ators. As a result, these interfaces are also technically more complex
than GUIs. The focus of this part, therefore, is on facilitating the place-
ment of such interactive elements on post-WIMP user interfaces.

First, I investigate the placement of electronic components, such
as sensors and actuators, onto physical post-WIMP interfaces such as

132 4 Facilitating Placement of Interactive Electronics

interactive paper. Paper is a widely-used physical medium, but has
traditionally been largely static in nature. Recent technological inno-
vations such as printed circuits have enabled the integration of elec-
tronics into paper substrates, opening up the possibilities of making
it a dynamic medium. However, placement of interactive elements
on paper is a challenge. It typically requires knowledge of electron-
ics as well as programming, making it inaccessible to non-experts. In
this chapter, I address challenges to placing interactive electronic ele-
ments on paper, and present PaperPulse as a viable approach, enabling
non-experts to create such post-WIMP interfaces. PaperPulse stream-
lines the process of creating paper interfaces, providing users with an
integrated workflow to place interactive components onto paper sub-
strates, and specify the desired interactivity.

This chapter is based on the following publications:

1. RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-
pulse: An integrated approach for embedding electronics in pa-
per designs. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, pages 2457–2466.
ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3145-6. doi:
10.1145/2702123.2702487

2. RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-
pulse: An integrated approach to fabricating interactive paper. In
Proceedings of the 33rd Annual ACM Conference Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’15, pages 267–
270. ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3146-3.
doi: 10.1145/2702613.2725430

3. RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-

4.1 Introduction 133

pulse: An integrated approach for embedding electronics in pa-
per designs. In SIGGRAPH 2015: Studio, SIGGRAPH ’15, pages
3:1–3:1. ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3637-
6. doi: 10.1145/2785585.2792694

4. RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-
pulse: An integrated approach for embedding electronics in pa-
per designs. In ACM SIGGRAPH 2015 Posters, SIGGRAPH ’15,
pages 9:1–9:1. ACM, New York, NY, USA, 2015. ISBN 978-1-4503-
3632-1. doi: 10.1145/2787626.2792650

4.1 Introduction

Post-WIMP user interfaces go beyond traditional GUI by integrat-
ing new forms of interactivity and interactive elements, such as
novel sensing techniques, electronic components, interactive tangi-
bles, among others. Interactive paper is one such category of post-
WIMP interfaces, which can be realised by placing electronic compo-
nents onto the physical mediums.

4.1.1 Placing Electronics on Post-WIMP Interfaces

To make electronics available for non-experts, construction kits target-
ing programmers, such as .net gadgeteer [60] or Phidgets [48], or non-
programmers, such as littleBits [13] provide modules to rapidly build
hardware prototypes. However, these kits are often bulky and expen-
sive. Thus, for instance, it is not feasible to create interactive greeting
cards that can be handed out, or games that are seamlessly integrated

134 4 Facilitating Placement of Interactive Electronics

into paper, like the one illustrated in Figure 4.1e. In a similar vein, de-
sign tools, such as Midas [129], d.tools [57], Examplar [56] or Boxes [64]
make it easier for users to link sensor data to application logic through
programming by demonstration. However, these tools require users
to have some exposure to programming languages. Additionally, they
do not allow for standalone systems since they assume hardware sen-
sors to be connected to a desktop computer at all times.

4.1.2 Interactive Paper

Recently, there has been a growing interest in different fields and com-
munities (e.g. research, maker movement, engineering and marketing)
in making paper interactive by augmenting it with electronics. Interac-
tive input and output components such as buttons, sliders, LEDs, and
buzzers, among several others, can now be placed on flat paper sub-
strates, and connected using printed circuits. This makes it possible
to produce low-cost paper versions of PCBs in lab environments [71]
and bring liveness to paper artefacts such as books [117, 116] and
posters [135]. Although advancements in fabrication tools for elec-
tronic circuits, such as conductive pens, threads, inkjet printers [71]
and vinyl cutters [129] make it accessible for many people to build
these paper circuits, a vast majority lacks expertise in electronics and
programming to make paper interactive using electronic circuits.

4.1.3 Research Question

While circuit building and programming skills can be acquired by non-
experts through workshops and tutorials [117, 98], adding electronic

4.1 Introduction 135

circuits onto post-WIMP interfaces, such as paper or wearables, is not
yet as convenient as adding visual designs on paper with common
graphical software tools, such as Illustrator or InDesign.

To facilitate the placement of interactive electronic elements, such
as sensors and actuators, on physical post-WIMP interfaces, this chap-
ter discusses the research question:

How can we facilitate non-experts in placing interactive electronic ele-
ments on commonly used physical mediums by obviating the needs for pro-
gramming and electronics skills?

To this end, this chapter investigates an end-to-end workflow (il-
lustrated in Figure 4.1, and presents PaperPulse as a design tool that
enables users to place interactive electronic elements onto paper inter-
faces.

4.1.4 PaperPulse: Placing Electronic Elements onto Pa-
per Interfaces

PaperPulse is a design tool that assists in, and automates, parts of
the design, programming, and fabrication of electronic paper circuits.
With PaperPulse, non-expert users make standalone interactive paper
artefacts in which electronic components are seamlessly integrated in
visual designs. An end-to-end workflow enables users to enrich visual
designs with interactive elements without the need for programming
the application logic, or constructing electronic circuits manually. The
remainder of this chapter describes the PaperPulse workflow and de-
sign tool in detail, and illustrates some sample paper interfaces that
can be realised using our tool.

136 4 Facilitating Placement of Interactive Electronics

Canvas

Widget
Toolbox

a

b

d e

c

ConfirmIf

Event Sequence 1

Event Sequence 2

If

Then
Map...To...If...Then...

(Use existing recording) (Use existing recording) Auto Undo

EXECUTE

Then

Event Sequence 3

Event Sequence 4

If

EXECUTE

Then

Show Recorded EventsPrint DesignInsert Image SimulateSaveOpenPage Setup

Push Buttons

Switches

grab now

go

Buzzer
LED 4

Button

Switch

LEDs

grab the banana

ExecuteRecord Record

Logic Recorder

Recorded
Logic

If...Then... Map...To...

Figure 4.1: The PaperPulse workflow streamlines the entire process of
creating interactive paper artefacts. (a) Design and specify logic; (b)
print sheets; (c) assemble; (d) upload generated program to microcon-
troller; (e) final paper artefact.

4.2 Background 137

4.2 Background

The work presented in this chapter builds on fabrication techniques
for designing electronic circuits and design tools for sensor-based in-
teractions.

4.2.1 Fabricating Electronic Circuits

Modular electronic construction kits, such as Little Bits [13], .NET
Gadgeteer [60], Phidgets [48], Calder toolkit [85] made it easier and
thus more accessible for non-experts to build electronic circuits. To
preserve the aesthetic and expressive qualities that traditional craft-
ing materials provide [98, 113], researchers have investigated different
techniques to integrate flexible circuits directly into substrates using
copper tape [117], conductive ink [98], threads [113] or fabrics [116].
These techniques have been used for different purposes, for exam-
ple, to electronically augment pop-up books [116, 117], design inter-
active invitation cards, posters and paper headphones [135], and en-
rich origami and paper sculptures [128]. To ease and speed up the
process of fabricating electronic circuits, researchers explored various
techniques, such as chemical sintering with off-the-shelf inkjet print-
ers [71], cutting copper foil with a vinyl cutter [129], drawing conduc-
tive traces with a plotter [37], integrating circuits directly in the paper
making process [30], and by making adhesive [61] stickers with inte-
grated PCB’s available.

Although these efforts make it easier to fabricate electronic circuits
on materials such as paper, it still requires users to have basic knowl-
edge of electronics, something the test subjects in some of the previ-

138 4 Facilitating Placement of Interactive Electronics

ously discussed platforms acquired through workshops [98, 117] and
online tutorials [113]. Similar to Midas [129], PaperPulse automatically
generates electronic circuits with step-by-step instructions to assist the
assembly process.

PaperPulse thus shares inspiration with Midas, but it offers impor-
tant contributions beyond this work. First, artefacts designed with Mi-
das are not standalone systems and need to be connected to a desktop
computer at all times. Secondly, Midas only supports capacitive sen-
sor pads. Also, the extensive logic support in PaperPulse is not offered
by Midas. Unlike Midas, PaperPulse is not limited to planar circuits
and produces much smaller and less fragile circuits.

4.2.2 Design Tools for Sensors-Based Interactions

To make it convenient for programmers to work with electronic com-
ponents, researchers developed well-defined programming interfaces
for micro controllers [60, 98] as well as for specific electronic I/O com-
ponents [12, 48, 85]. Researchers have also developed various vi-
sual programming approaches to empower non-programmers make
sensor-based interfaces. Some of these approaches are analogous to
building blocks, such as ScratchForArduino1 and eBlocks [92]; other
systems support basic functionalities by analysing handwritten key-
words [18].

Instead of specifying logic visually or textually, programming by
demonstration generates program logic under the hood by observing
examples. This approach has been used to record simple keystrokes

1S4A: Scratch For Arduino. http://s4a.categories

4.3 PaperPulse: An Overview 139

and mouse clicks and replay them when an input event is recog-
nized [64, 129]. Other systems record higher dimensional signals,
such as sensor data from accelerometers [56] or cameras and micro-
phones [33] and generalize rules using machine learning techniques.
To support more complex sets of rules, demonstration techniques are
also used to define transitions in statecharts [57].

The logic supported by our programming by demonstration ap-
proach, Pulsation, is closest in spirit to PICL [41]. Both Pulsation and
PICL support discrete as well as continuous events. In contrast, Exam-
plar [56] and d.tools [57] focus solely on extracting discrete events from
continuous input streams. As such, there is no direct support for map-
ping a continuous input signals (e.g. a potentiometer) to a continuous
output signal (e.g. an LED). Although Pulsation is a software plat-
form and not a hardware platform as PICL, there are also important
differences in logic: PICL only supports a single input and output sig-
nal whereas Pulsation has extensive support for defining time-related
relations between multiple input or output signals. This makes it pos-
sible to specify that multiple actions need to happen simultaneously,
sequentially or after a certain amount of time. Furthermore, Pulsa-
tion also allows to map derived signals as explained in section Map-To
Rules.

4.3 PaperPulse: An Overview

PaperPulse enables users without a technical background to make tra-
ditional designs on paper interactive by seamlessly placing I/O com-
ponents and microcontrollers. We believe that these components will

140 4 Facilitating Placement of Interactive Electronics

soon become cheap enough to enrich every paper design, from books,
posters, and business cards to ephemeral packaging material and fly-
ers.

Figure 4.1 shows how PaperPulse streamlines the design and fabri-
cation process of interactive paper artefacts. (a) The user places inter-
active elements (e.g. push buttons, sliders, LEDs, microphones) on the
visual design, and specifies the logic between components by demon-
stration. (b) PaperPulse generates different layers, consisting of visual
elements and electronic circuits printed using an inkjet printer filled
with conductive ink [71]. (c) By following step-by-step instructions,
and placing electronic components on the printed circuits, the user as-
sembles the different parts. (d) Next, PaperPulse generates code that
can be directly uploaded to the microcontroller attached to the paper.
(e) The design can now be used as a standalone interactive artefact.

4.3.1 PaperPulse Essentials

Although electronic circuits generated with PaperPulse can be fabri-
cated using various techniques (e.g. a conductive pen, vinyl cutter),
the circuits are optimized for printing on resin coated paper using
a conductive inkjet printer [71]. To finalize the printed circuit, elec-
tronic components, such as resistors, buttons, switches, and LEDs,
are attached using ECATT-tape2 or conductive paint. PaperPulse sup-
ports both Netduino3 and Threadneedle4 microcontrollers. Pins on the
Netduino connect to paper circuits using bulldog clips. In contrast,

2Electrically Conductive Adhesive Transfer Tape
3www.netduino.com
4modlab.co.uk

4.3 PaperPulse: An Overview 141

Figure 4.2: An interactive diet card to keep track of the user’s daily
food consumption. Touch buttons are used to turn on LEDs, which
indicate the currently consumed amount. A ‘reset’ button clears the
current state, allowing the card to be reused.

Threadneedle exposes flat connection pins that seamlessly connect to
the circuit printed on paper (Figure 4.1d).

4.3.2 Walkthrough: A Diet Tracking Card

The following walkthrough illustrates the process of placing electronic
elements, and constructing an interactive diet tracking card with Pa-
perPulse (Figure 4.2). The card consists of three food categories, with
LEDs to indicate daily consumption. A user can track their consump-
tion by pressing on three touch buttons, one for each category. A reset
button allows them to clear the current progress, and to reuse the card.

142 4 Facilitating Placement of Interactive Electronics

Step 1: Designing the Interactive Paper Layout

The user starts by specifying the dimensions of the paper design. Pa-
perPulse then allows to import pre-designed visual elements (i.e. im-
ages) and to arrange them onto the canvas (Figure 4.1a). Next, the
user places interactive components (seven LEDs and four push but-
tons), available in the widget toolbox (Figure 4.1a), onto the design. To
give users a better idea of the look and feel of different components,
tooltips with video previews [52] are available in the widget toolbox.

Step 2: Defining and Verifying Logic Iteratively

The user begins by recording the logic for connecting the 3 buttons to
the corresponding LEDs:

(a) The user starts a new input recording in the map-part of the logic
recorder.

(b) On the canvas, she demonstrates one of the buttons being mo-
mentarily pushed.

(c) She connects this to an output recording in the to-part of the logic
recorder.

(d) She sequentially selects each of the relevant LEDs, and demon-
strates their brightness changing to 100%.

(e) In the logic recorder, she specifies that the repetitions of button
press are mapped to the progress of the LEDs.

(f) Similarly, the user repeats the steps to specify the logic for all 3
buttons and respective LEDs.

To verify the recorded rule, the user starts the simulator to interact
with the widgets and observes the corresponding output. By observ-
ing fulfilled conditions and executed actions in the Debug View, the

4.3 PaperPulse: An Overview 143

user can identify possible mistakes in the recorded rules.
When the ‘reset’ button is pressed and released, all LEDs are turned

off, and the diet card is reset to the starting state. Next, the user records
this logic:

(a) The user starts a new input recording in the if -part of the logic
recorder.

(b) She records the reset button press and release action.
(c) She then records a new output recording to reset the progress of

all 3 buttons.

Step 3: Printing and Assembly

Once the design is complete, the user specifies the position of the mi-
crocontroller, and verifies that electronic connection pins for the wid-
gets do not overlap. She adjusts widgets (e.g. position, size or orienta-
tion) if necessary.

The printing process starts by generating: (1) An electronic circuit
that connects widgets to pins on the microcontroller while limiting the
number of intersecting circuit traces; (2) PDF files consisting of the
electronic circuits, widget-specific assembly lines (e.g. cut lines, fold
lines), and visual elements; (3) Microcontroller code; (4) A customized
tutorial to guide the user through the printing, deployment, and as-
sembly.

Following the automatically generated tutorial, the user is in-
structed to print the generated PDF files (Figure 4.3) on three sheets
of paper, using a conductive inkjet and a colour printer, as required.
She then uses ECATT tape to attach bridges (zero-ohm resistors) at
intersecting traces that could not be resolved by the auto-routing al-
gorithm. The remainder of the tutorial provides instructions to cut,

144 4 Facilitating Placement of Interactive Electronics

fold and glue layers of paper, attach electronic components, such as
LEDs, resistors, and attach the microcontroller and upload the gener-
ated code.

As shown in Figure 4.2, the resulting end-product can now be used
as a standalone paper interface by connecting a battery.

Figure 4.3: Generated sheets with circuit designs, graphics, and
widget-specific traces. The user follows generated instructions to print
and assemble the paper interface.

4.4 PaperPulse Widgets 145

a

b

c

Figure 4.4: The three families of PaperPulse widgets: (a) Off-the-shelf
slider; (b) Paper-membrane slider; (c) Pull-chain slider.

4.4 PaperPulse Widgets: Interactive Elec-
tronic Elements

To support a diverse range of interactive elements, suitable for paper
designs, we present three families of standard widgets to realise basic
controls such as push buttons, switches, sliders, and radio buttons.
Each family is unique in its own way, and provides some strengths
to distinguish itself from the others. Figure 4.4 illustrates how each
approach realizes a linear slider.

4.4.1 Design Challenges

Our three families of standard widgets draw inspiration from the work
by Qi and Buechley [116, 117] and Kickables [130]. However, design-

146 4 Facilitating Placement of Interactive Electronics

ing reusable widgets that can be printed turned out to be non-trivial:
How can we ensure the continuity of the brittle circuit traces over fold-
ing structures? How can moving parts be powered? How can the
firmness be increased and widgets made durable?

The three widget families consist of a different number of layers.
To allow widgets of all three families to co-exist in a single design, we
devised a uniform layering approach: a base layer, a widget-specific
layers (where needed), and a top layer. This layering approach is also
vital for the seamless integration of electronics and visual elements,
since all conductive traces are concealed. Every widget design ensures
that all conductive lines are traced back to the base layer, which is
connected to the microcontroller.

4.4.2 Off-the-Shelf Widgets

PaperPulse currently supports eight off-the-shelf input sensors and
four output components (Figure 4.5). Some components expose flat
connection pins on the bottom (SMDs5) and therefore are attached di-
rectly to paper using ECATT-tape. Components having very small
connection pads or regular connection pins (through-hole compo-
nents) are first attached to a custom-built flexible PCB substrate that
exposes large connection pads to the paper circuit, similar to Circuit
stickers [61]. Alternatively, through-hole components can be extended
with crimp terminals.

Although off-the-shelf widgets require only little manual assembly,
they have a fixed design and often protrude from the surface. When

5Surface Mounted Devices

4.4 PaperPulse Widgets 147

Microphone

Light Sensor

5-Way Radio
Button

Slider Crimp Terminal

Seven-Segment
Display

LED Vibration
Motor

Buzzer

Switch Button

Pressure Sensor

Flex Sensor

Input Components Output Components

Figure 4.5: The off-the-shelf widgets currently supported by Paper-
Pulse.

augmenting paper designs with electronics, it is often desirable to re-
size components and integrate them seamlessly with visual elements
on paper. This is accomplished with paper-membrane and pull-chain
widgets.

4.4.3 Paper-Membrane Widgets

Figure 4.6 shows two paper-membrane widgets. The main design ra-
tionale behind paper-membrane widgets is to create an electronic cir-
cuit between the base layer and back of the top layer and separate
them with thin air gap using a paper frame (widget-specific layer) that
serves as a spacer (Figure 4.6a). Pressing on the top layer connects it to
the bottom, closing the circuit and thus realizing a push button. The
top layer is powered from the base layer by connecting regions Z1 and
Z2 using ECATT-tape.

148 4 Facilitating Placement of Interactive Electronics

Base Layer

Widget-Specific Layer

Top Layer

3

2

1

3

2

1

Analog

Vcc

2MΩ Resistor

Resistive Strip
(VHS Tape)
Resistive Strip
(VHS Tape)GND Digital

Input

Z-Axis Tape

Z2
Z2

Z1
Z1

Grounda b

Figure 4.6: Design of paper-membrane widgets: (a) push button (b)
slider.

Figure 4.6b shows the design of a paper-membrane slider in which
the principle of a variable voltage divider is applied to measure the
position where the top (wiper) and base layer make contact. To in-
crease sensor resolution, the resistive strip should have a large re-
sistance range. Although resistive strips can be printed (by reduc-
ing the opacity, and hence quantity of conductive ink) or drawn us-
ing graphite [62], we noticed that due to wear-and-tear the resistance
of these strips often changes at frequently touched spots. For paper-
membrane sliders, we therefore use resistive 8 mm VHS tape6 as sen-
sor strip, resulting in a more durable paper-membrane slider.

Paper-membrane widgets support radio buttons and switches by
incorporating multiple paper-membrane push buttons in a single wid-

6Several other kinds of tapes could also exhibit linear resistance.

4.4 PaperPulse Widgets 149

get with a shared software state. In contrast to off-the-shelf widgets,
paper-membrane widgets are customizable. On the other hand, they
do not offer tangibility. This is the essence of pull-chain widgets.

4.4.4 Pull-Chain Widgets

Pull-chain widgets draw inspiration from planar paper pop-up mech-
anisms [26]. Similar to off-the-shelf widgets, pull-chain widgets pro-
vide tangibility but at the same time do not protrude from the surface.
Since they are designed entirely out of paper, pull-chain widgets are
customizable and blend seamlessly into paper designs.

Although pull-strip mechanisms are traditionally used as sliding
mechanisms [116], we see them as omnivalent pulling mechanisms in
the same way as old-fashioned pull chains were used to control elec-
trical appliances, such as light bulbs and fans. Figure 4.7 shows a pull-
chain switch, slider, radio button and push button (using a crossing
interaction technique [6]).

The mechanisms used for pull-chain widgets are optimized for
tracking with electronic circuits printed on paper. These conductive
traces are often brittle and cannot span across folded structures. As
shown in Figure 4.8, the mechanical design of every pull-chain wid-
get consist of (a) a folded tube structure with a hollow centre to ensure
strength and rigidity during pulling and pushing motions, (b) slots to
guide the pull-strip, (c) a wing tab to lock the pull-strip in place and (d)
a pull-tab that functions as handle. The pull-strip itself is interwoven
in the top layer. In combination with the tube structure, this provides
sufficient pressure between the pull-strip and the base layer to ensure

150 4 Facilitating Placement of Interactive Electronics

a b c d

Figure 4.7: Pull-chain widgets supported by PaperPulse: (a) Push-
button, (b) Switch, (c) Radio button, (d) Slider.

electrical connectivity, and at the same time provides an acceptable
amount of friction to manipulate pull-chain widgets comfortably.

Figure 4.8 also shows the electrical circuit design specifically for
pull-chain sliders. This consists of an analog sensor strip (8 mm VHS
resistive tape) and winded circuit traces on the back of the pull-strip.
Pull-chain radio buttons use the same approach but software thresh-
olds are used to realize discrete states. In contrast, pull-chain push but-
tons and switches consist of conductive patches at specific spots that
make an electronic connection when the strips are pushed or pulled.
Push buttons, switches and radio-buttons usually employ mechani-
cal detent mechanisms. These techniques however do not transfer to
paper since paper is too fragile. To avoid undesired oscillations when

4.4 PaperPulse Widgets 151

Base Layer

Widget-Specific Layer

Top Layer

3

1

2

Resistive StripResistive Strip

Protruding FlapsProtruding Flaps

Wing TabWing Tab

GuidesGuides

Folded
Tube Structure

Folded
Tube Structure

GroundGroundAnalogAnalog
(Wiper)(Wiper)

VccVcc Pull TabPull Tab

c

b

a

d

Figure 4.8: Design of pull-chain widgets: The widget-specific layer
is interwoven into the top layer by passing it through four slots. Pro-
truding flaps on the base layer also pass through these slots to ensure
constant contact between the winding circuit traces on the pull-chain
and the three pin connections on the base layer.

widgets are in between states, hysteresis and timeouts are used in soft-
ware.

4.4.5 Summary of PaperPulse Widgets

In order to provide users a wide variety of widgets in PaperPulse, we
presented three families of standard widgets. As shown in Table 4.1
each design offers its own strengths and limitations.

We distilled the paper-membrane and pull-chain widget designs to
their bare minimum to ensure customizability and reusability. How-

152 4 Facilitating Placement of Interactive Electronics

Off-the-shelf Paper-Membrane Pull-chain
Interaction Style Tangible Touch Tangible

Minimal Assembly Yes No No

Seamless Integration
(Non-protruding) No Yes Yes

Customisable No Yes Yes

Table 4.1: Strengths and limitations of PaperPulse widget families

ever, we envision more custom designs in the future, such as slid-
ers with non-straight tracks or even circular shapes for dial mecha-
nisms (often called wheels or volvelles in paper craft [26]). The paper-
membrane and pull-chain widgets mainly focus on standard controls,
such as push buttons, switches, sliders and radio buttons since these
components benefit much from customization. However, in the future
we hope to integrate paper versions of other input (e.g. bend, pressure
sensors) and output components (speakers [128, 135], microphones) in
PaperPulse.

4.5 Pulsation: Specifying Sensor Logic By
Demonstration

Pulsation allows users to specify logic by demonstrating and recording
actions directly in the context of the visual design elements. This pre-
serves the WYSIWYG paradigm, which users are familiar with from
graphical software tools. Demonstrating actions in a graphical user
interface, however, is limited to actions that can be defined through

4.6 Architecture and Implementation 153

the interface of the tool. For example, demonstrating multiple actions
that need to be executed simultaneously is impractical using a regular
mouse and keyboard. Similarly, specifying a set of actions that can be
performed in any order, requires demonstrating all possible permuta-
tions. To address these challenges, and provide a higher ceiling than is
possible with demonstration alone, Pulsation augments widgets and
the demonstrated actions with dialogs that allow fine-tuning of spe-
cific properties.

At the same time, demonstrating actions in the context of visual
design elements calibrates the state of the input widget to real world
values that are present in the visual design. This makes it possible, for
example, to gauge a slider by demonstration, or choose which state of
a switch is high or low.

To define the behaviour of electronically augmented paper designs,
the Pulsation logic recorder supports if–then as well as map–to rules as
shown in Figure 4.1a. For if–then rules, a set of recorded actions (output
set) is executed when a set of recorded conditions (input set) has been
met. For map–to rules, parameters of input set (e.g. the number of
fulfilled actions in the set) are continuously mapped to parameters of
the output set (e.g. speed with which the set of actions are executed
repeatedly). Both if–then and map–to rules thus relate an input event to
an output event.

4.6 Architecture and Implementation

The design tool supported by PaperPulse, the Pulsation logic and in-
terpreter are implemented in .NET/C#. This section describes the ar-

154 4 Facilitating Placement of Interactive Electronics

chitecture and algorithms underlying the PaperPulse system.

4.6.1 Pulsation Interpreter

The Pulsation interpreter can execute recorded if–then and map–to
rules in our test and debug environment as well as on microcontrollers.
The implementation is consistent with .Net Micro Framework specifi-
cations to ensure its portability to microcontrollers, such as Netduino
and Threadneedle. As such, the results observed in the test and de-
bug environment of PaperPulse are always consistent with the output
from the microcontroller.

To get the recorded logic onto these microcontrollers, we generate
code with .NET CodeDOM that re-instantiates all objects needed for
the specified Pulsation logic. Once the microcontroller starts, it runs
the generated code and thus initializes all logic. Afterwards, the micro-
controller runs the Pulsation interpreter every CPU cycle. The Pulsa-
tion interpreter keeps track of timing information and states of widgets
over different cycles to ensure that the output is always correct and in-
dependent of the speed of the microcontroller. The current version of
the Pulsation interpreter requires a least 26 kilobytes of memory.

Pulsation achieves a modular design that is reusable and extensible
by abstracting: (1) Widgets according to their input or output type to
make the system sensor-agnostic (e.g. whether an off-the-shelf slider,
paper-membrane slider or pull-chain slider is used, is irrelevant for
Pulsation). (2) Connection pins to support different microcontroller
platforms, such as Netduino and Threadneedle. (3) Actions and con-
ditions as discussed in sections Input Sets and Output Sets.

4.6 Architecture and Implementation 155

4.6.2 Filtering Signal Noise

In contrast to the behaviour of widgets inside the design tool, their
physical counterparts are subject to noise which might lead to unde-
sired oscillations. PaperPulse mitigates this problem by smoothing
analog input signals. When analog signals are discretised (e.g. for
pull-chain radio buttons), hysteresis, or double thresholding is used.

4.6.3 Generating Electronic Circuits

Similar to Midas [129], PaperPulse employs an auto-routing algorithm
to generate conductive traces that connect the pins exposed by widgets
to the pins of a microcontroller. We implemented a variation of the A*
algorithm [55], in which traces can make junctions with other traces
that connect to the same pin. Our routing algorithm avoids other con-
ductive traces as well as the instructions that are printed. When the
circuit is non-planar, the algorithm leaves space for a zero-ohm SMD
resistor, which serves as a bridge.

Control pins of widgets can often be connected to multiple pins
on a microcontroller. This depends on the input or output signal that
is required. For example, the anode of an LED can be connected to
any PWM pin. However, if binary output suffices, a digital pin can
be used. Our routing algorithm takes this into account and first uses
the specified logic to assign a set of valid control pins to every widget.
The algorithm then selects those pins that maximize the number of
widgets that can be connected given the limited set of pins on the mi-
crocontroller. Finally, it favours those pins which, when routed, have
the lowest number of intersections with other traces.

156 4 Facilitating Placement of Interactive Electronics

4.6.4 Generating Printable Pages

Although our design tool gives users the impression that the final de-
sign consist of a single sheet of paper, every widget adds content to
multiple sheets (see section Design Challenges). These sheets consist of
conductive traces, visual design elements, and instructions for attach-
ing components, or cutting, folding, and gluing of paper. Each type of
instruction has a unique style, such as dotted lines for cutting, dashed
lines for folding, and hatched regions for gluing.

Although every design consist of three sheets of paper, some sheets
(i.e. the top layer) also have information present on the back of the pa-
per while others require conductive as well as non-conductive infor-
mation on the same page. Therefore, five PDF files are generated for
every design using the PDFSharp library7. The tutorial assists users to
print these files using the conductive inkjet printer, or a regular colour
printer for non-conductive elements. Conductive traces are rendered
using vector graphics to preserve the quality and maximize its con-
ductivity. When content is printed on the back of a sheet, PaperPulse
automatically flips it to ensure correct alignment. Regions of different
layers that have to make contact to ensure electrical connectivity are
enlarged to compensate for possible misalignments by the printer or
user (e.g Z1 and Z2 in Figure 4.6).

7http://pdfsharp.com

4.7 Evaluation 157

4.7 Evaluation

To gauge the usability and utility of PaperPulse, we conducted a pre-
liminary first-use study with four participants. All participants had
a design background (1 multimedia, 1 graphical, and 2 product de-
sign). Two participants had no prior experience in programming or
electronics. The other two participants had some limited experience
with Arduino and programming. Every session lasted for 2.5–3 hours.
A video introduced the participants to the basic options of Paper-
Pulse. Next, a video tutorial for designing and fabricating the diet
card, shown in Figure 4.2, was provided. For the first task, partici-
pants were instructed to replicate this diet card using PaperPulse. For
the second task, participants had to design and conceive their own
ideas in PaperPulse, and reported on their experience with the system
through a questionnaire and interview.

All participants were able to design and assemble the diet card in
less than 45 minutes. Participants perceived the process of assembling
the design enjoyable and were satisfied with the end result and re-
ported that the outcome met their expectations. One designer said he
was “pleasantly surprised and the whole fabrication process was like
magic”.

After finishing the diet card, participants were enthusiastic to make
their own design and logic in PaperPulse. Two participants had very
concrete ideas: one designed an interactive placemat for restaurants,
and the other designed interactive city maps as shown in Figure 4.9:
one to filter through points of interest, and another to enable voting
for specific neighbourhoods (similar to [153]). The other two partici-

158 4 Facilitating Placement of Interactive Electronics

Figure 4.9: Designs made by a participant. (a) A voting meter for
neighbourhoods. (b) A tourist information map.

pants had more abstract ideas (e.g. pressing multiple buttons to make
LEDs blink, and specify beeping patterns played by a buzzer) and ex-
plored these using PaperPulse. During logic specification, all partici-
pants used the simulator regularly, to check if the rules they added be-
haved as expected. Since rules used by participants were quite simple,
errors were detected immediately. We expect users to take advantage
of the ‘Debug View’ for more complex rules. All participants could
successfully define and fine-tune the interactive behaviour of their de-
signs with Pulsation.

According to the questionnaire and interview, participants felt that
PaperPulse supports a wide variety of widgets which could even fos-
ter new design ideas. One participant suggested additional widgets
that can be supported in the future, such as 2D touch pads and stepper

4.8 Beyond Paper: Smart Clothing and Home Interfaces 159

motors. During the limited exposure to Pulsation, participants found
map–to rules harder to understand compared to if–then rules. How-
ever, everyone recognized that the derived parameters supported by
map–to rules are very useful and provide a lot of flexibility.

The two participants who had experience with the Arduino plat-
form reported that they would be able to make the diet card using
other tools, such as breadboards and copper tape. However, they
noted that this would require more time and skill and the result would
probably not be as visually pleasing as with PaperPulse.

Participants also identified several areas for improvement. Firstly,
participants found it hard to get a grasp on the different options avail-
able in Pulsation. As suggested by two participants, more comprehen-
sive video tutorials would help give a better idea of how the options
can be used in different scenarios. Secondly, participants preferred
more visual instructions (e.g. images or videos) during the assembly
phase.

4.8 Beyond Paper: Smart Clothing and Home
Interfaces

This chapter has extensively discussed the integration of interactive
electronics onto paper interfaces. During the course of my research,
I have also investigated how we can facilitate the placement of inter-
actions onto other post-WIMP interfaces such as smart clothing and
home interfaces. in this section, I briefly discuss our work on these two
application areas. A thorough description of these projects is beyond

160 4 Facilitating Placement of Interactive Electronics

the scope of this dissertation. For further details, readers are referred
to the following publications:

1. KASHYAP TODI and KRIS LUYTEN. Suit up!: Enabling eyes-free
interactions on jacket buttons. In Proceedings of the Extended Ab-
stracts of the 32Nd Annual ACM Conference on Human Factors in
Computing Systems, CHI EA ’14, pages 1549–1554. ACM, New
York, NY, USA, 2014. ISBN 978-1-4503-2474-8. doi: 10.1145/
2559206.2581155

2. KASHYAP TODI and KRIS LUYTEN. Suit up!: Inconspicuous in-
teractions on jacket buttons. In Proceedings of the 2014 CHI Con-
ference Workshop on Inconspicuous Interactions, CHI EA ’14. ACM,
New York, NY, USA, 2014

3. KASHYAP TODI, KRIS LUYTEN, and ANDREW VANDE MOERE.
Making smart homes personal: Fabrication and customisation of
home interfaces. In Proceedings of the CHI ’15 Workshop on Smart
for Life: Designing Smart Home Technologies that Evolve with Users,
CHI EA ’15. 2015

4. JELCO ADAMCZYK, KASHYAP TODI (ADVISOR), and KRIS

LUYTEN (PROMOTER). Easyhome: (re)-designing your home in-
terfaces. Bachelor Thesis. 2016

5. STEVEN PEETERS, KASHYAP TODI (ADVISOR), and KRIS

LUYTEN (PROMOTER). The home logging toolkit. Bachelor The-
sis. 2017

4.8 Beyond Paper: Smart Clothing and Home Interfaces 161

a. Output Buttons

b. Input Buttons

Figure 4.10: Prototyping interactive buttons. (a) A jacket with buttons
of suitable size. (b) Some working prototypes: 1. Four-way control 2.
Status LEDs 3. OLED Display 4. Piezo-electric Speaker.

4.8.1 Placement of Interactive Electronics on Smart
Clothing

In Suit Up! [143], we presented a new interaction space for smart cloth-
ing. We augmented ordinary buttons with electronic components, to
integrate them into outdoor clothing such as suits and jackets. These
interactive buttons, or iButtons, allow users to perform tasks using
inconspicuous gestures—subtle actions which are not easily perceived
by others. Different types of buttons serve dedicated functions, and
appropriate placement of these buttons make them easily accessible,
without requiring visual contact. The buttons are modular in nature;
by linking multiple buttons, users can specify customised workflows
for certain tasks. We implemented a family of interactive buttons:

162 4 Facilitating Placement of Interactive Electronics

Input Buttons: Push button; radial dial; four-way control (D-pad); ca-
pacitive touch and proximity sensor; microphone.
Output Buttons: Camera; OLED display; 7-segment display; speaker;
dual-state LEDs.
Some of these prototypes are illustrated in Figure 4.10.

4.8.2 Placement on Home Interfaces

Home interfaces consist of a large number of interconnected devices
and controls, and can often be quite complex. Further, requirements
from a home interface can change over time—with the evolving needs
of the user, or as and when different users inhabit the home. This
makes placement of interface elements in a home environment chal-
lenging and non-trivial. To this end, we propose the concept of an
evolving home, which can change over time, and be adapted by the
users. Additionally, we developed two end-user tools to place and
specify interactivity within the home, and to log interactions with
home interfaces.

The Evolving Smart Home

In ‘Making Smart Homes Personal’ [144], we proposed a framework
for the personal home, where the occupant actively contributes to de-
signing and customising the surrounding interfaces. Our proposed
model, the Design–Deploy–Dispose (DDD) cycle, is an adaptation of
the well-known Design–Implement–Analyse (DIA) cycle, often used
for iterative design of interfaces [24]. The DDD cycle, as shown in Fig-
ure 4.11, consists of the following phases:

4.8 Beyond Paper: Smart Clothing and Home Interfaces 163

Disp
ose

Design

Corrections &
 minor upgrades

Complete
redesigns

Deploy
Short-term

Long-term

Figure 4.11: The Design–Deploy–Dispose Cycle as a framework for
the evolving smart home. Users design and deploy smart interfaces
in their homes, and dispose them once their needs evolve, starting the
cycle again.

1. The Design Phase: End-user design tools enable users to design,
customise, and personalise household interfaces.

2. The Deploy Phase: Using accessible home fabrication tech-
niques, users assemble the interface, and deploy them in their
household.

3. The Dispose Phase: As and when users’ needs evolve, or the end
result is unsatisfactory, the low cost of hardware enables them to
recycle or dispose parts, and repeat the cycle.

164 4 Facilitating Placement of Interactive Electronics

End-User Configuration of Home Interfaces

PaperPulse investigated an integrated workflow that could enable
non-expert users to place interactive electronics on paper interfaces.
To enable the continuous evolution and customisations of home inter-
faces, in ‘EasyHome’ [2], we extended this to also address the place-
ment of household interfaces, and specify how they interact with each
other. Figure 4.12 illustrates such a workflow, where a user starts by
overlaying the blueprint of their home with different household wid-
gets, such as buttons and lamps. After configuring the widget, to spec-
ify the hardware being used, connections between widgets can be cre-
ated visually, and the rule editor can be used to specify behaviour.

End-User Logging of Interactions

In chapter 3, Familiariser logged a user’s interaction history to auto-
matically adapt user interface layouts to each user. It can be beneficial
to apply similar approaches to homes, which also consist of several
interconnected interface elements. However, detecting user interac-
tions with ordinary household interfaces is non-trivial. While smart
home appliances are capable of self-sensing and logging user actions,
the same does not apply to traditional interface elements such as light
switches, door handles, blinds, among others. This makes it challeng-
ing to model a user’s interaction history. To address this, we investi-
gated attaching low-cost off-the-shelf sensors to home interfaces. We
implemented a tool, and an end-to-end workflow (Figure 4.13), that
guided users towards placing sensors onto home interfaces, and cal-
ibrating them, thus enabling sensing of all interactions with such in-

4.8 Beyond Paper: Smart Clothing and Home Interfaces 165

A. Place a device
 B. Configure the device

C. Connect multiple devices

D. Setup logic

Figure 4.12: Workflow for interactively placing home interfaces. A)
The user places a household widget by overlaying it onto the home
layout diagram on the canvas. B) The widget hardware is configured.
C) The user specifies interconnections between multiple widgets. D)
Logic is specified using the rule editor.

terfaces. As a result, different physical interfaces are augmented with
logging capabilities. A user’s interaction history can be now recorded,
and be viewed in the system. By constructing a detailed history of user
interactions, we can develop methods and techniques to automatically
suggest changes and adaptations in the home interface layout, to im-
prove usability of such interfaces.

166 4 Facilitating Placement of Interactive Electronics

Figure 4.13: Workflow for placing sensors on home interfaces, to log
user interactions. (a) The user specifies the home interfaces on a lay-
out diagram of the room. (b and c) The user attaches a sensor to the
home interface, and connects it to an Arduino microcontroller. (d) The
sensor is calibrated using on-screen instructions. (e) The final interface
augmented with interaction logging capabilities.

4.9 Discussion

4.9.1 Summary

This chapter discussed the placement of interactive electronic compo-
nents on post-WIMP interfaces. It presented PaperPulse, a design and
fabrication approach that allows end-users to enrich traditional visual
designs on paper by placing interactive electronic elements onto them.

4.9 Discussion 167

In order to do so, PaperPulse contributes a design tool, three fami-
lies of interactive widgets, and a logic recording and demonstration
technique Pulsation. PaperPulse supports the whole process from de-
sign and specification of interactive paper to fabrication and assem-
bly. An informal evaluation with non-expert users indicated that our
approach is viable. Participants were pleased with the resulting stan-
dalone paper artefact. They were in particular enthusiastic about the
possibilities PaperPulse offers, i.e. creating interactive paper designs,
that were unavailable for them before. In the last part of this chapter,
I also briefly discussed our work on facilitating the placement inter-
active elements on other post-WIMP interfaces such as smart clothing
and home interfaces.

4.9.2 Revisiting the Research Question

Post-WIMP user interfaces open up a new range of interaction possi-
bilities to communicate with computers, which were previously not
possible with GUIs. For instance, by embedding interactivity into
physical mediums such as paper, we can create dedicated user inter-
faces for certain tasks, and move one step closer towards the vision of
ubiquitous computing. However, the technical complexities also open
up new challenges in placing interactive elements on such interfaces.
In our quest to facilitate the placement of interactive elements on post-
WIMP interfaces, the research question for this chapter, as stated in the
introduction, is:

How can we facilitate non-experts in placing interactive electronic ele-
ments on commonly used physical mediums by obviating the needs for pro-

168 4 Facilitating Placement of Interactive Electronics

gramming and electronics skills?

To this end, this chapter makes the following technical contribu-
tions:

1. A design tool to place electronics onto paper designs, and specify,
test, and debug logic between these components. When fabricat-
ing, our tool assists by automatically generating circuits, layers,
pages and instructions to help assemble the final paper artefact.

2. Pulsation, a demonstration technique to specify interaction logic
between basic electronic sensors. The Pulsation interpreter runs
in a simulator integrated into the design tool and on the sup-
ported microcontrollers.

3. Three families of interactive widgets to support a diverse range of
interactive electronic elements. Each one of them consist of mul-
tiple standard controls, such as push buttons, switches, sliders
and radio buttons for an overall number of 20 different interac-
tive components.

Our evaluation assesses the usability and utility of PaperPulse for non-
experts.

By enabling non-experts to place interactive elements onto paper,
and thus create their own interfaces from scratch, this chapter opens
up the possibilities for highly customised post-WIMP user interfaces.
Going beyond paper, chapter also discusses extensions of the con-
cept to facilitate placement on personal post-WIMP UIs, such as smart
clothing and household interfaces.

4.9 Discussion 169

4.9.3 Principles for Facilitating Placement of Electron-
ics

The key design principles derived from this work, towards the goal of
facilitating placement of electronic elements on post-WIMP UIs are:

1. Eliminate need for circuit design by automatically generating
valid circuits based on placed elements.

2. Support intuitive methods for specifying logic by using if–then
and map–to styled rules on a WYSIWYG interface.

3. Assist in placing components by creating specialised hardware
widgets and providing detailed assembly guidelines.

4. Enable iterative design exploration and improvement by pro-
viding a simulator for testing, or by enabling continuous logging,
and use-time modifications and customisations.

4.9.4 Limitations and Next Steps

Technically, our implementation of PaperPulse has three main limita-
tions. Firstly, Pulsation is not a general programming language (i.e.
Turing complete) that supports arbitrary data structures, functions
and variables. We found one could use workarounds (e.g. using the
state of an LED as boolean variable) but these come at the expense of
simplicity. Secondly, although some widgets draw inspiration from
pop-up mechanisms, more extensive pop-up and origami techniques
can be integrated in the future to enable non-flat designs. Although
the visual design and dimensions of paper-membrane and pull-chain

170 4 Facilitating Placement of Interactive Electronics

widgets can be customized, their overall shape (e.g. shape of handle)
is fixed. We envision a widget editor in the future. Finally, the current
version of PaperPulse does not optimize usage of electronic compo-
nents. Every widget needs to be exclusively connected to one digital
or analog pin on the microcontroller. Future implementations could
optimize this by supporting multiplexing strategies or by sharing pins
among output widgets that are in the same state at all times. For some
very simple designs, widgets could be operated using only a battery,
eliminating the microcontroller. While PaperPulse is a rich design tool
that facilitates non-experts to place interactive elements on paper in-
terfaces, it does not support modification of the interface after it has
been constructed. For customised and personalised interfaces, user
needs and requirements can change over time. Our work on smart
clothing and home interfaces has explored facilitating adaptation of
personalised interfaces based on needs and requirements of users.

In contrast to the specialised interactions presented in this chap-
ter, standard input controls enable users to perform elementary tasks
such as text and number entry, and navigation. For GUI interfaces, the
mouse and keyboard provide users with efficient input capabilities for
these tasks. Post-WIMP interfaces, in contrast, support different sens-
ing mechanisms, interaction techniques, and modalities. The input
capabilities are limited to the constraints of the interface. In the next
chapter, I discuss facilitating the placement of standard input controls
on post-WIMP interfaces.

4.10 Acknowledgements 171

4.10 Acknowledgements

Firstly, I’d like to thank my collaborators, Raf Ramakers and Kris
Luyten, for their significant contribution towards PaperPulse. Jo Ver-
meulen engaged us in many useful discussions, Tom De Weyer and Jo-
hannes Taelman provided technical advice, Karel Robert helped with
illustrations used in the designs, and Johannes Schöning provided
some early feedback on this work. I thank them for helping this project
reach fruition. Finally, I also thank study participants for their time.

172 4 Facilitating Placement of Interactive Electronics

173

Chapter 5

Facilitating Placement of Input
Controls Across Interfaces

In the previous chapter, I discussed the placement of electronic com-
ponents, to create special-purpose post-WIMP interfaces. The interac-
tion mechanisms in each interface were highly-customised, and man-
ually specified by the users. In contrast to task-specific interactions,
standard input controls enable users to perform elementary tasks such
as text and number entry, and navigation. Typically, mouse and key-
board devices enable users to provide such input to GUI interfaces. To
address constraints of post-WIMP interfaces, or to take full advantage
of their capabilities, novel input techniques have been extensively re-
searched. In this chapter, I address the challenge of placing standard
input controls on post-WIMP interfaces. I present BinPut as a univer-
sal input technique for post-WIMP interfaces. The technique facilitates
the placement of input controls across a wide range of devices and
modalities, and for different types of input, such as text or number

174 5 Facilitating Placement of Input Controls

entry, selection, and navigation. BinPut can be directly applied across
a diverse range of scenarios, while maintaining consistent behaviour
and usability, and supporting transfer of learned skills.

5.1 Introduction

A long-term goal of the post-WIMP and ubiquitous computing com-
munity has been to seamlessly weave interactivity into the fabric of
our daily lives by augmenting a wide range of surfaces and spaces
with computational power. Unlike traditional GUIs, post-WIMP inter-
faces and technologies open up possibilities for computing devices tai-
lored towards specific purposes, and designed to handle specific tasks.
In the previous chapter, I discussed some such post-WIMP interfaces,
in the form of interactive paper, wearables, and home interfaces. I
investigated the facilitation of placing specialised electronic widgets
and components onto post-WIMP interfaces. These widgets enabled
customised workflows and interactions, and were targeted towards
specific tasks. However, standard input controls for tasks such as text
entry, item selection, or navigation were not explicitly considered.

Input devices such as standard keyboards tend to have a large foot-
print, and specific device requirements. Placing them onto post-WIMP
interfaces is often either tedious or impractical. It can be beneficial
to minimise the footprint of input controls, yet enable standard input
tasks on new interfaces. A typical approach for integrating such input
into new devices and modalities is to develop custom input techniques
specifically for each device. Switching between devices, therefore, re-
quires us to learn different input techniques, and continually change

5.1 Introduction 175

or adapt our input strategy accordingly. Additionally, the complexity
of specialised input techniques makings it hard for users to place them
on interfaces.

5.1.1 Research Question

Fallman states that ubiquitous computing moves the focus from tools
tailored to a specific task to designing consistently “good user experi-
ences” [38]. This chapter is, therefore, motivated by the potential for
a low-threshold and consistent input technique, which can be applied
to a wide range of devices and modalities, and for various types of
input tasks. Further, to aid in placement of input controls onto a va-
riety of post-WIMP UIs, we aim to reduce the footprint required for
the controls, and to have a technique that can directly scale across dif-
ferent interfaces, with no or minimum modification. This inspires the
following research question:

How can we facilitate the placement of standard input controls on post-
WIMP interfaces while maximising consistency across interfaces and reduc-
ing re-learning of the input technique?

A technique that is consistent across devices and modalities, and
has minimal technical requirements, offers the advantage that new
interfaces can directly adopt it, and present users with a consistent
technique, thus reducing adaptation and re-learning requirements. To
this end, we present BinPut, an input technique that is both device-
independent and input type-independent.

176 5 Facilitating Placement of Input Controls

5.1.2 BinPut: An Input Technique for Post-WIMP Inter-
faces

BinPut formulates input tasks as a targeted search problem. Using the
binary search mechanism [20], users recursively traverse any ordered
input search space to reach target elements. Examples of such ordered
input sets include numerical values, alphabets, sorted lists, and contin-
uous positions (e.g. sliders and cursors). We adapt binary search, an
efficient and scalable search algorithm, to enable universal input with
minimal device requirements. With BinPut, input tasks only require
two navigational commands—increment and decrement—and two ad-
ditional commands to confirm and undo. The technique scales to multi-
dimensional input, such as pointing, as well. For every additional in-
put dimension, two additional navigational commands are required.
Since the technique can be applied to any ordered input set, it is type-
independent. BinPut also scales across devices and modalities since it
requires a minimal number of input commands, and can thus be con-
sidered device-independent. The technique finds applications in ubiqui-
tous interfaces, emerging and novel devices, do-it-yourself (DIY) in-
terfaces, and in scenarios where accessible input is required. BinPut
makes it possible to place input controls into UIs where it might oth-
erwise be infeasible or complex—it minimises the required footprint,
and is easy to implement, requiring minimal computational power.

In this chapter, I describe the BinPut technique in detail, discuss
type- and device-independence aspects, and also highlight opportuni-
ties for customising the technique for specific scenarios. We present a
theoretical evaluation to illustrate the feasibility and benefits of our ap-

5.2 Background 177

proach. Our user study evaluates whether the BinPut technique sup-
ports the transfer of learning between devices, for different types of
input.

5.2 Background

There is a long-spanning history of input-related research. Our work
is closely related to other efforts to enable input for post-desktop
and ubiquitous interfaces, and also to research related to device-
independent input. The following discussions do not aim to provide
an exhaustive list of emerging input techniques, but summarise key
aspects of these two areas of research, and distinguish our work from
previous research.

5.2.1 Post-WIMP Input Techniques

Previous research efforts have have focussed on enabling text-entry
on post-desktop and ubiquitous devices with varying input capabil-
ities, such as (multi-)touch input, gestural, midair, and gaze interac-
tions. Gestural keyboards [79] helped overcome drawbacks such as
lack of haptic feedback, and enabled one-handed interactions with
touch-sensitive screens. For smaller surfaces such as smartwatches
and wearables, works such as [110, 27, 51] have proposed novel text-
entry techniques that are tailored towards target devices. For midair
interactions, handwriting recognition [3] and gestural interactions [96]
have been developed to deal with problems such as lack of hand-
support and haptic feedback, or jittery input and unstable motions.

178 5 Facilitating Placement of Input Controls

Each of these text-entry techniques has been tailored towards the
given technology, addressing problems inherent to them. In a similar
vein, pointing and selection techniques have also been implemented
for post-desktop devices. Direct touch input for targeting on touch-
sensitive surfaces provides obvious benefits. However, as the input
area shrinks, disadvantages of these direct manipulation techniques,
such as occlusion and the fat-finger problem, have become appar-
ent. Works such as [22, 114] have improved targeting and selection on
small surfaces by moving the interactions to surfaces around the de-
vice. Pointing and selection in midair has been investigated as well.
AirPointing [29] studies target acquisition without visual feedback,
and [154] describe a technique for freehand targeting from a distance,
for large displays. [95] enables selection of hyperlinks using gaze in-
teractions.

It is noticeable that each of these works has provided tailored so-
lutions that take advantage of capabilities offered by new technolo-
gies, and also attempt to overcome hurdles introduced by them, for
enabling different types of input. These research works aim to best
support a given device or modality, for certain types of input. The
input technique, therefore, needs to be customised and adapted for
specific scenarios are conditions. In contrast, BinPut aims to provide
a universal solution, that can be applied to a diverse range of input
types, and adopted by different devices and modalities.

5.2 Background 179

5.2.2 Device-Independent Input and Input with Few
Keys

Previous works, such as [65], have presented device-independent in-
put techniques. This is typically done by reducing the number of
keystrokes, gestures, or input events, required to support input tasks.
EdgeWrite [160] is one such instance that promotes cross-device text
entry, and it has found uses in several domains such as in-car text-
entry [47]. The technique uses four directional moves to create pat-
terns resembling Roman character glyphs, enabling text-entry on de-
vices capable of recognizing four distinct input strokes or gestures.
However, the technique is limited to text-entry, and is designed specif-
ically for the A—Z character set. Directly applying it to a differ-
ent language or character set is non-trivial. Like EdgeWrite, Dasher
[155] also offers a device-agnostic text-entry mechanism. Dasher is
designed such that it can provide text-entry in situations where a full-
scale keyboard is not feasible, and it claims to work for any language,
hence providing more flexibility. It has also been adapted for different
modalities such as gaze input [148]. There have been works such as
[93] that also highlight benefits of interactions with a small number of
keys. However, since they use specific encodings, they can not be eas-
ily ported across input sets, and require users to learn and remember
the encodings.

As evident, the above techniques are limited to one type of input—
text-entry, and often to a specific character set. To our knowledge, the
only other technique that is agnostic to both input modality and input
type is linear or sequential search [14], where input is selected by seri-

180 5 Facilitating Placement of Input Controls

ally traversing all elements. However, the linear search mechanism is
not performant, and does not scale well to large input sets, and hence
is used sparingly.

The binary search technique, like linear, also has the potential of
enabling device-independent input that works across different input
types and tasks. Previously, [86] studied the application of binary
search for list selection tasks, and results from their study favoured
the binary search mechanism. In our work, we adapt binary search,
and present mechanisms through which the technique can be applied
an extensive number of scenarios, for different input types and tasks,
and directly adoptable by various input devices and modalities.

5.3 BinPut: Adapting Binary Search for Input

Binary search, also known as logarithmic search, requires a maximum
of log2(n � 1) comparisons to locate an element within a sorted ar-
ray containing n elements. This implies that as the size of the search
space grows exponentially, the number of comparisons needed to lo-
cate any element increases linearly. Given no additional information
about the search space or the target element, binary search offers an
optimal search technique. In our work, we adapt the binary search
mechanism to present a flexible input technique that can be applied to
any ordered input set.

5.3 BinPut: Adapting Binary Search for Input 181

5.3.1 Walkthrough: An Input Task

In BinPut, the input task is essentially reduced to targeted search. To
find a target element, within an ordered input set, the following steps
are performed:

1. Initially, the middle element of the input space is presented as a
cue to the user.

2. The user mentally compares the cue element to the target ele-
ment, and makes a move in the required direction, to get closer
to the target.

3. The cue element updates accordingly, and gives the user feed-
back about the update state.

4. The user repeats navigational moves, to recursively traverse the
ordered set, and reduce the input space.

5. Once the cue and the target elements match, the user selects the
input.

5.3.2 Input Commands

BinPut provides users with four essential input commands (or moves):

1. Increment: Performed when the desired input element appears
after (proceeds) the current cue (middle element).

2. Decrement: Performed when the desired input element appears
before (precedes) the current cue.

3. Confirm: Performed to select the current cue as the target.
4. Undo: Reverts the search space to its previous state.

182 5 Facilitating Placement of Input Controls

0 N-1N/2N/2 -1

0 N/2 -1 N-1N/2 +1

N/2 +1

Decrement

Initial Cue

Increment

2
N/2 -1

2
N/2 +N

Input Search Space (N elements)
(a) Binary Search Moves

(b) Linear Search Moves

mm-1 m+1 m+2m-20 N-1

Decrement Increment

Figure 5.1: Searching the input space. (a) Binary search traversal when
starting from the initial input space of N elements. An increment or
decrement move reduces the search space to half the original size. (b)
Linear search moves when the search space has <=5 elements.

5.3.3 Searching the Input Space

To locate target elements in the input space, BinPut combines both bi-
nary and linear search techniques. A User does not need complete in-
formation about the input set, or exact positioning of target elements.
Instead, they compare the current cue (middle element) to the target
element, and decide whether an increment or decrement move is re-
quired.

5.3 BinPut: Adapting Binary Search for Input 183

Traversing with Binary Search

When the input space consists of more than 5 elements, the binary
search mechanism is applied to navigate the search space (Figure 5.1a).
To find a target element within the sorted array, a single comparison
is made with the current cue (middle element). If this cue element is
greater than (proceeds) the target, a decrement command limits the con-
sequent space to the lower half. Alternatively, if the cue is lesser than
(precedes) the target element, the increment command trims the search
space to the upper half. By recursively performing these comparison
and trimming operations, users can quickly locate any target element
within the input space.

Switching to Linear Search

When the search space consists of 5 elements or less, the average num-
ber of moves required by both binary and linear search are similar.
Thus, BinPut switches to a linear mechanism when the search space
reaches this threshold (<= 5 elements). The search space is reset to the
original (entire) array of elements, and users can increment or decre-
ment to linearly scan through the elements, and find the target (Fig-
ure 5.1b). This linear mechanism improves usability, and aids in late
recovery from errors, providing a fallback search mechanism in cases
where users might make erroneous moves while navigating through
the binary tree, thus ending up at the wrong leaf node.

The resultant BinPut algorithms for Increment and Decrement input
commands (moves) is summarised in Figure 5.2.

184 5 Facilitating Placement of Input Controls

Increment(A[N],mid, min, max):
1. if mid == N-1
2. return A[mid] (Stop at last value)
3. else if (max - min) <= 5
4. mid = mid + 1 (Linear Increment)
5. return A[mid]
6. else
7. min = mid + 1 (Binary Increment)
8. mid = ⌈(min + max)/2⌉
9. return A[mid]

Decrement(A[N],mid, min, max):
1. if mid == 0
2. return A[mid] (Stop at first value)
3. else if (max - min) <= 5
4. mid = mid - 1 (Linear Decrement)
5. return A[mid]
6. else
7. max = mid -1 (Binary Decrement)
8. mid = ⌈(min + max)/2⌉
9. return A[mid]

(a) Increment

(b) Decrement

Variables:
A[N]: Input Space with N elements
mid: Current middle index
min: Minimum index of search space
max: Maximum index of search space

Figure 5.2: The BinPut algorithm for (a) increment and (b) decrement
input moves. When the search space has <= 5 elements, BinPut
switches to a linear search mechanism (Step 3–5).

5.4 Type-Independence with BinPut 185

5.3.4 Undo Mechanism

To implement consistent undo, BinPut maintains a state history con-
sisting of a sequential array of BinPut states, corresponding to the in-
put moves performed previously. Each state contains information of
the current minimum, maximum, and middle values pertaining to a
given increment/decrement move. By maintaining a complete state
history, the undo command behaves deterministically, irrespective of
the sequence of moves performed.

By applying the above search mechanisms, BinPut enables type-
independent input, in that it can be directly applied to any type of input
set or task, as long as the elements exhibit an inherent ordering. Since
the technique requires only four elementary input commands, and a
single cue (middle element) as output or feedback, BinPut also claims
to be a device-independent input technique.

5.4 Type-Independence with BinPut

Since BinPut is applicable to any ordered input set, the above mech-
anisms provide a basis for adapting BinPut to a range of input types.
This includes text and number entry, selection within ordered lists,
one-dimension scrolling, and two-(or multi-) dimensional inputs such
as pointing and navigation.

5.4.1 Number Entry

By initialising the input space with a desired range of values (mini-
mum and maximum), input of numerical data is enabled. For exam-

186 5 Facilitating Placement of Input Controls

ple, by specifying a valid range of ‘years’, one can directly enter a four-
digit birth year without individually entering each digit, or scrolling
through a long list of values. Number entry within a restricted (or-
dinal) set can be supported as well. For instance, intermittent values
(e.g. multiples of 10 only) can be entered using BinPut. This can be
implemented by either specifying a rule (or function), or by providing
a precise set of accessible input values.

5.4.2 Text Entry

BinPut offers a viable text entry technique when the input or output
device capabilities are limited. Unlike other text entry methods,
BinPut is agnostic to the language and character set, making it widely
adoptable. The only exceptions are alphabet or character sets that
do not exhibit inherent ordering. In addition to character-wise text
entry, BinPut can also be applied to whole-word entry, and even
phrase-level text entry. Figure 5.3 illustrates the search tree for the
English alphabets (A–Z), where any character can be reached with a
maximum of five BinPut moves.

5.4.3 List Selection

Selection of elements from long lists is another excellent candidate for
BinPut. This is applicable when lists can be sorted according to an
identifiable criteria, such as alphabetically, sequentially, or chronolog-
ically. To implement list selection, BinPut simply requires the specifi-
cation of list elements, and the sorting criteria to be applied.

5.4 Type-Independence with BinPut 187

M

F T

P

N

O

W

YUR

S V ZX

C I

K

LJ

G

H

D

E

B

A

Decrement Increment

Figure 5.3: The binary search tree for Roman (A to Z) characters. A
maximum of 5 moves is required to reach any character.

List selection using BinPut has several use cases. For example,
street names, cities, and countries, can be entered into navigation sys-
tems using a small number of steps. Browsing through contact lists
on a smartwatch, selecting from a large list of movies using a simple
remote control or gestures, or finding a photo, in a collection sorted
chronologically, are other exemplary scenarios.

5.4.4 One-Dimensional Scrolling

BinPut can also be applied to other common forms of input, such
as one-dimensional scrolling and navigation. For instance, a media
player can implement BinPut for fast and accurate navigation to any
particular point on a timeline. (Figure 5.4) illustrates this with an
implementation of BinPut for a DIY paper remote control, fabricated
through conductive inkjet printing and capacitive touch input. Bin-
Put can be adapted to work from any arbitrary starting position (scroll
position). Only the current position in the scrollbar or timeline, and

188 5 Facilitating Placement of Input Controls

Decrement Increment

Con
firm

Und
o

Dec
rem
ent

Incr
eme
nt

Figure 5.4: BinPut can be used to quickly and accurately scroll through
a continuous range of values, for example, to navigate to an exact
timestamp in a video using a DIY paper remote control made using
conductive inkjet printing.

the accessible range (minimum and maximum) of values, are required.
When the user initiates a navigation command, the entire range is first
divided into two sub-ranges, one on either sides of the current posi-
tion, and these are then treated as two independent BinPut instances.

Aceituno et al. [1] state that high-resolution mice are often not
fully utilised, and addresses the problem of finding the useful resolu-
tion of such devices. Since BinPut allows users to recursively approach
a target, with increasing precision at each step, it bypasses this prob-
lem, and in a way, allows users to “dynamically” determine the re-
quired resolution. Additionally, while typical scrolling and pointing
movements consists of an initial ballistic phase, followed by correc-
tive phases to recover from undershoots and/or overshoots, BinPut
circumvents this by supporting precise navigation to a target position.

5.5 Device-Independence with BinPut 189

5.4.5 Multi-dimensional Pointing

BinPut implements multi-dimensional pointing (or navigation) by si-
multaneously maintaining multiple BinPut instances, one for each di-
mension. Two navigational input commands are required for every
input dimension.

Indirect pointing on 2D-surfaces can be realised using a total of 4
navigational commands (Figure 5.5). Since the two dimensions are
independent, the number of moves required to point at any on-screen
target is the sum of moves required along each direction. Thus, for a
1920⇥1080 display (2,073,600 pixels), the maximum number of BinPut
moves required is:

Maxx = MaxBinPutMoves1920 = 11moves

Maxy = MaxBinPutMoves1080 = 10moves

=> Maxxy = Maxx +Maxy = 21moves

where, Maxx and Maxy are maximum moves for x- and y-axis respec-
tively, and Maxxy is the total maximum moves for the 2D space.

As targets usually occupy several pixels, the effective number of
maximum moves for 2D pointing is generally lesser.

5.5 Device-Independence with BinPut

As previously highlighted, BinPut is a device-independent input tech-
nique. To make the technique adoptable by a wide range of devices
and modalities, BinPut minimises the input and output device require-
ments, as elaborated below.

190 5 Facilitating Placement of Input Controls

x-axis

y-axis

Initial Cursor
Position

Target

IncrementY

Input Events

IncrementXDecrementX

DecrementY

ConfirmUndo

0 1

2 3

45

Figure 5.5: Multi-dimensional pointing with BinPut. Each dimension
is assigned an independent instance of BinPut, allowing navigation to
any point on all dimensions. The figure illustrates a series of 5 moves
to manipulate the cursor from the initial cue position to a target. 6
distinct input events are required for 2D pointing.

5.5.1 Input Device Requirements

A complete implementation of BinPut can be realised with just four
elementary input commands. Therefore, any input device or modality
capable of detecting four distinct events can support BinPut for differ-
ent input types. For multi-dimensional input tasks, such as 2D point-
ing, two events (for increment/decrement commands) are required for
each dimension. Some common input devices and modalities suitable
for BinPut are highlighted below.

Physical or soft keys: This includes input devices such as key-
boards, physical keys, and buttons. A large number of devices such
as remote controls, microwave ovens, on-steering car controls, often

5.5 Device-Independence with BinPut 191

support only a limited number of input keys.

Touch input: BinPut can be adopted by typical touchscreen devices
such as phones, tablets, or smartwatches, among others. Through
capacitive and resistive sensing, novel ubiquitous interfaces, such as
interactive paper with printed electronics [72] or 3D-printed objects
[131], can also enable touch input. For such interfaces, BinPut can
provide a reliable input mechanism, even when sensing is of low-
accuracy, and only a small number of touch locations (events) are
available.

Midair and Gaze Gestures: Midair and gaze input are known to be
jittery, inaccurate, and error-prone [100, 53]. This can be attributed to
sensing and human-motor limitations. Since BinPut requires only four
discrete input moves, it can be effective in such scenarios as well. By
employing gestures such as midair swipes, or gaze oscillations (sac-
cades) in fixed directions, input events are distinctly recognised, and
used for BinPut moves.

Speech: BinPut can also be used for speech input, for devices
where complete speech recognition is computationally infeasible or
expensive, or when precise commands are unavailable, such as in
noisy environments. This can be especially beneficial for inputs such
as list scrolling or pointing. Simple verbal commands for navigation
(increment/decrement), confirm, and undo, are sufficient to fully im-
plement the technique.

192 5 Facilitating Placement of Input Controls

5.5.2 Output Device Requirements

BinPut has minimal output requirements to provide users with stim-
ulus or feedback. Since comparisons are made with a single cue ele-
ment, only this needs to be perceivable by users. Neither the entire
input space, nor the minimum and maximum values, needs to be pro-
vided to the user. However, when rich output is available, additional
information about the input space, or the range of values, can improve
usability. Thus, BinPut can be successfully implemented with differ-
ent output devices and modalities, and the level of feedback can be
adapted according to device capabilities.

5.5.3 Implementations

During the course of this research, we implemented BinPut on several
devices and platforms:

1. Physical keys on laptops and desktops (MacOS): For one-
dimensional scrolling, or two-dimensional pointing (Figure 5.5),
using a regular keyboard.

2. Touch input on mobile devices smartwatches (iOS and
WatchOS): For list selection, text, and number entry (Figure 5.7b)
on touchscreens of various sizes.

3. Midair gestures with the Leap Motion controller1: For free-
hand gestural input.

4. Gaze input with EyeTribe tracker2: For input at a distance, and
for accessible input, using discrete eye movements.

1www.leapmotion.com
2http://theeyetribe.com

5.6 Theoretical Evaluation of BinPut 193

5. Arduino-based input sensors: For input using sensors con-
nected to an Arduino, such as inkjet-printed capacitive touch
(Figure 5.4).

These implementations illustrate the device-agnostic property of
BinPut.

5.6 Theoretical Evaluation of BinPut

We investigate the scalability aspects across input types and tasks us-
ing a theoretical evaluation of BinpPut. For this, we analyse the num-
ber of moves required for input, and the estimated time taken for input
tasks.

5.6.1 Number of Input Moves

The number of moves required for an input task is related to the size
of the input set. Here, we assess the effect of varying number of ele-
ments in the input set, and compare BinPut against two linear search
mechanisms:

1. Linear (Start at Middle): Linear search mechanism with the ini-
tial cue at the middle of the input space.

2. Linear (Start at First): Linear search mechanism where the initial
cue is the first element of the array.

While binary search has a time complexity of O(log n), linear tech-
niques are typically 0(n). For the above three mechanisms, the maxi-
mum number of moves required to select input from a set containing

194 5 Facilitating Placement of Input Controls

Number of Input Moves

Input Type Size of
Input Set

BinPut Linear
(Start at Middle)

Linear
(Start at First)

Mean Max Mean Max Mean Max

English Alphabets 26 3.11 5 6.5 13 12.5 25

Khmer Alphabets 74 4.38 6 18 37 36.5 73
Number Entry
0–99 (e.g. age) 100 4.85 7 24.5 50 49.5 99

Number Entry
0–9999 (e.g. postcode) 10000 11.36 13 2499.5 5000 4999.5 9999

List Selection
(with 1000 elements) 1000 8.01 10 249.5 500 499.5 999

1-D Scrolling
(2880 pixels
Retina Display)

2880 9.58 11 719.5 1440 1339.5 2979

2-D Pointing
(2880 ⨉ 1800 pixels
Retina Display)

5,184,000 18.58 22 1169.5 2340 2339.5 4679

�1

Figure 5.6: Scalability analysis for different input types, with varying
set sizes. As the size of the input set increases, the number of moves
required by linear techniques rapidly becomes much higher than that
needed by BinPut.

N possible inputs can be represented by the following equations:

MaxMovesBinPut = dlog2 (N � 1)e

MaxMovesLinearMiddle = dN/2e

MaxMovesLinearF irst = N � 1

(5.1)

Figure 5.6 summarises the mean and maximum number of input
commands (moves) required for these three input mechanisms, for dif-
ferent input types and tasks. We cover a range of input tasks, with
varying input space sizes, including text and number entry, list selec-
tion, scrolling, and pointing.

5.6 Theoretical Evaluation of BinPut 195

5.6.2 Input Task Time

In addition to the size of the input space, input performance (task com-
pletion time) is also vastly affected by input devices, or modalities, and
their accuracy. For a given input task, the task completion time can be
estimated as:

ttask = Nmoves ⇤ (tcognition + tmotor) (5.2)

where, ttask = task time; Nmoves = number of moves required; and
tcognition = cognition time per move, tmotor = motor time per move.

Cognition Time

It is evident that the time required for cognitive processing, to decide
the next move, plays a key role in overall input time. In contrast to sim-
pler techniques such as linear search or direct pointing, BinPut might
suffer from increased cognition time, since users need to repeatedly
evaluate the current cue, to decide their next move. This is particu-
larly the case for new users, unfamiliar with the technique. However,
since BinPut moves are determinate and predictable, learning and re-
call could alleviate this issue. Over extended use, it is possible for
users to acquire a better understanding of the technique and anticipate
the next moves in advance, thus reducing cognition time.

Motor Time

The motor time per move is the amount of time required for a user to
make the next input move, after having decided what the move needs
to be. This time is dependent on the input devices and modalities, as

196 5 Facilitating Placement of Input Controls

well as user abilities. The advantages of minimising the number of
moves becomes evident with devices that are slower or less accurate
(large tmotor). This is typically the case for post-WIMP devices, which
are known to support alternate input modalities, or are restricted by
technical limitations. Accessible input devices, which address specific
user needs, also typically have the limitation that the motor time re-
quired for input strokes is often quite large. For example, making a
single input move using eye gaze is much more expensive than a but-
ton press. Since the cognition time remains constant across devices
and modalities, BinPut can also be advantageous in maintaining simi-
lar performance across different inputs.

5.7 Evaluation: Device- and Type- Indepen-
dence of BinPut

Our theoretical evaluation clearly illustrates the benefits of BinPut
over linear search techniques. While the technique is easily adopt-
able across devices and input types, the transfer of learning skills is
an important aspect to its success. Thus, we conducted a user study
to verify whether users can learn the technique and transfer this to a
different device or modality, and a different input type or task.

5.7.1 Study Conditions

The study was divided into two conditions. For each condition, a dis-
tinct input device (modality) was used for a distinct type of input task.

5.7 Evaluation: Device- and Type- Independence of BinPut 197

1. Physical keys for Visual Scrolling: In the first device–task com-
bination, participants used four physical keys to visually scroll to
targets along a one-dimensional horizontal scroll bar, displayed
on a screen. The four arrow keys on a standard keyboard were
used for input commands. The left and right keys were used to
scroll to different positions (search the BinPut tree), the up-arrow
was used to confirm an input, and the down to undo previous
moves (Figure 5.7a).

2. Smartwatch Swiping for Number Entry: In this device–task
combination, participants used a smartwatch to enter target
numbers. Right and left swipes were used to search for the target
numbers, swiping upwards confirmed the input, and swiping
downwards allowed undo of previous moves (Figure 5.7b).

To maintain consistency between both scenarios, a total of 100 tar-
gets were reachable. That is, the scroll bar was internally divided into
100 distinct positions, and the range for number entry was 0 to 99.
Note that for the scroll bar, there was no visual indication of these di-
visions, and it appeared as continuous on the screen.

5.7.2 Apparatus

For the scrolling task with physical keys, a Macbook Pro laptop run-
ning MacOS 10.12 was used. The four arrow keys on the built-in key-
board were used for input. A 15" Retina Display was used to dis-
play the stimulus and feedback to participants. All keystrokes were
recorded with timestamps, and stored in a CSV file.

198 5 Facilitating Placement of Input Controls

(a) Physical Keys + Scrolling (b) Smartwatch Swipes + Number Entry

Initial Stimulus Initial Stimulus

On Reaching Target On Reaching Target

Target

Current

Target

Current

Figure 5.7: The two conditions in the study. (a) Scrolling using physi-
cal keys. (b) Number entry using smartwatch swipes. For each trial, a
target stimulus is presented, and the current position (in red) is set to
the initial value. On reaching the target value, an indication (in green)
is provided.

For the number entry task with swipe gestures, an Apple Watch
(42mm, Series 2) running WatchOS 3 was used. A custom WatchOS
application was implemented, and run on the device, which displayed
the stimulus and feedback. All gestures were recorded with corre-
sponding timestamps, and stored in a CSV file.

5.7.3 Participants

We recruited 20 participants (9 female), aged 23 to 39 (mean 29.7). 7
participants had a background in Computer Science, while the remain-
ing 13 participants had not undertaken an education in Computer Sci-
ence or Mathematics. All participants used physical keys (keyboard)
on a regular basis, but did not use a smartwatch. The participants were

5.7 Evaluation: Device- and Type- Independence of BinPut 199

divided into two groups (10 each), and the distribution of educational
background and gender in both groups was balanced.

5.7.4 Procedure and Experimental Design

For each participant, the study was divided into two consecutive
rounds. Participants performed the two conditions sequentially, with
a short break after each round, during which they were asked to com-
plete a short qualitative questionnaire. All participants performed
both conditions, resulting in a within-subject study design.

Each round consisted of 120 input trials. Since a different number
of optimal BinPut moves are required for different target values, the
trials were divided into 12 sets, each consisting of 10 trials. We ensured
that the total number of moves required for input trials within a set
was constant for all sets, making it possible to compare each of them.
For the given range of possible target values (0 to 99), the number of
navigational moves required to reach all targets ranged from 0 to 7
moves. The distribution of targets within the sets ensured that each set
consisted of the entire range of these moves. Exact target values were
picked at random from the 0–99 range. Participants were allowed to
take a short break after every third set.

To study the learning and skill transfer aspects of the input tech-
nique, participants were divided into two groups. Between the two
groups, the order in which the above two scenarios was presented to
the participants was interchanged. Thus, while the first group per-
formed scrolling tasks with physical keys in Round 1, followed by the
number entry task with a smartwatch in Round 2, the second group

200 5 Facilitating Placement of Input Controls

Condition 1 Condition 2
Participant
Group 1

Physical Keys +
Scrolling

Smartchwatch +
Number Entry

Participant
Group 2

Smartchwatch +
Number Entry

Physical Keys +
Scrolling

Table 5.1: Ordering of conditions (device + type) for the two groups of
participants, during the two rounds.

performed them in the reverse order (Table 5.1).
Using the above experimental design allowed us to evaluate

whether users, after using BinPut for a certain input task with a given
device, can apply the input technique to a different scenario, where the
type of input (task) and modality are varied.

There are three factors that influence learning and performance
(task completion time) in such a set-up:

1. Device Learning (LDevice)

2. Task Learning (LTask)

3. Input Technique (BinPut) Learning (LBinPut)

To evaluate whether Input Technique Learning transfers from one
device and task to another, we can analyse the learning and perfor-
mance differences between the first and second rounds. To elaborate,
the study design enables a comparison of the learning curve and per-
formance of participant group 1, during the first round (Round 1), to
that of participant group 2, during the second round (Round 2). Simi-
larly, we can compare results of participants in group 2 during the first
round, with that of participants in group 1 during the second round.
Since the device and task are consistent in both these comparisons, the

5.7 Evaluation: Device- and Type- Independence of BinPut 201

effect of Device Learning and Task Learning should not influence the re-
sults, and the effect of Input Technique Learning is the only factor that
would lead to observable differences.

5.7.5 Results

Results from the study indicated that participants were able to transfer
their learning of the technique from one device and task, to a different
device and task condition. In this section, we elaborate on this this
by comparing learning curves for the two rounds, for both conditions,
and by comparing average task completion times.

Figure 5.8 shows the learning curves for both conditions, by the or-
der in which they were used by participants. For scrolling with phys-
ical keys, participants who were given this condition first (group 1)
were able to reach an average set time of 30 seconds at set number
7, that is, after 60 trials. For the same condition, group 2 participants
were able to reach this average time of 30 seconds at set number 8,
that is, after just 20 trials. For number entry with a smartwatch, group
1 participants reached an average set time of 45 seconds at set number
8, after 70 trials. Group 2 participants reached this average time of 45
seconds at set number 4, after 30 trials. These results indicate that it
took fewer trials to reach a consistent level of performance (set time)
during the second experienced condition (Round 2), as compared to
the first (Round 1). This holds true for both conditions, that is for both
device–task combinations.

Thus, while device and task learning occurred in both conditions,
we can conclude that participants successfully learnt the input tech-

202 5 Facilitating Placement of Input Controls

Round Number

C
ondition

Set Number

Se
t T

im
e

(s
ec

on
ds

)

1 2 3 4 5 6 7 8 9 10 11 121 2 3 4 5 6 7 8 9 10 11 12

1 2

W
atch + N

um
bers

Keys + Scroll

40

50

60

70

30

40

50

Figure 5.8: Learning curves by round number, for the two conditions.
For both conditions, performance become consistent sooner in round
2 compared to round 1, highlighting the transfer of BinPut learning.

nique during the trials in the first round. Since they were able to trans-
fer this to the second round of the experiment, they could reach a stable
performance level sooner.

Figure 5.9 shows the average set time for both conditions, for the
two groups of participants. Round number had significant effect on
the average set time, with consistently higher set times for the first
round as compared to the second (Round 1 = 40.25 seconds, Round 2
= 36.47 seconds, t(18) = 2.19, p < 0.05).
Additionally, condition (device + task type) had significant effect on
the set time (Physical keys + Scroll = 30.48 seconds, Watch + Number

5.7 Evaluation: Device- and Type- Independence of BinPut 203

Av
er

ag
e

Se
t T

im
e

(s
ec

on
ds

)

20

30

0

10

40

50

60

70 Round Number

Round Number

C
on

di
tio

n Keys + Scroll

1

32.90s 30.17s

43.84s48.67s

2

Watch + Numbers

`Average TIme Per Set
(in seconds)

Physical Keys + Scroll Watch + Number Entry
Condition

1 2 1 2

2
1

Figure 5.9: Average set times by order number, for the conditions. For
both conditions, average set times were lower for order number 2 com-
pared to that of order number 1.

Entry = 46.26 seconds, t(18) = 8.53, p < 0.001).

The effect of learning can also be observed in Figure 5.9. Partici-
pants that performed a given condition second (i.e. in round 2) were
faster than participants that performed the same condition first (i.e. in
round 1), irrespective of the device and task. It can also be seen that
the average set times were considerably higher for number entry with
swipe gestures on the smartwatch than that for scrolling with physical
keys. This can be attributed to the effects of input device and task on
performance. Since users were more experienced with physical keys,
and in general, physical keys are known to be faster, task times were

204 5 Facilitating Placement of Input Controls

lesser. Additionally, this could also be a result of differences in task
complexity. While scrolling allowed for visual comparisons, number
entry relies upon numerical comparisons.

5.7.6 Discussion

In this user study, we found a positive effect of learning BinPut with
one condition, enabling skill transfer to a different task and device.
Independent of the starting condition (i.e. the task–device combina-
tion used at first), users succeeded in applying BinPut to a different
condition. These results support our claims that BinPut enables type-
independent and device-independent input for various use scenarios.
In addition, we observed that participants were able to learn the cor-
rect behaviour of the input technique in a short span of time, without
any prior knowledge of the search technique. During the post-study
interviews, participants commented that the change in task and device
did result in some early-stage learning during both rounds. However,
after experiencing BinPut in the first round, they were able to predict
the input behaviour during the second round, making the usage of
BinPut easier and more efficient.

Given the limited timespan of the study, we did not expect partic-
ipants to become experts at the BinPut technique. For instance, the
usage of the undo command is not obvious given the tree-based data
structure of BinPut. More familiar linear search techniques do not re-
quire undo; they just require changing the search direction. However,
we observed that 19 out of 20 participants successfully applied the
undo command on several occasions. Further, some participants also

5.8 Customising BinPut for Specific Scenarios 205

commented that after a few trials, they could learn some of the pat-
terns (moves) required to reach particular values. While these aspects
of learning were unexpected, they are positive indications of BinPut
having a low learning threshold. These results are encouraging for
BinPut as a type- and device-independent input technique.

5.8 Customising BinPut for Specific Scenarios

In its unmodified form, BinPut can be applied across a range of in-
put types, and adopted by any device that meets the minimal require-
ments. To improve the usability and performance aspects for specific
scenarios, BinPut supports further customisations. These customisa-
tions either reduce the number of moves required for certain input
types, or improve the interaction technique for certain devices and
modalities.

5.8.1 Interleaving Binary and Linear Search

We can customise BinPut to simultaneously support binary and lin-
ear search through input sets. By using binary search, users rapidly
traverse the tree, while linear searching allows immediate access to
neighbouring elements. A modifier key is used to switch between the
search mechanisms. Alternatively, for gestural input, different ges-
tures are used to distinguish between binary and linear search moves.
For instance, a swipe gesture results in a binary search move, while
scrolling gestures result in linear traversal.

However, intermittent switching between binary and linear search

206 5 Facilitating Placement of Input Controls

moves could result in unpredictable behaviour. To tackle this, we de-
vise a consistent scheme for the search behaviour. When users perform
consecutive binary search moves, the search space is trimmed accord-
ingly. When a linear move is triggered, the search space is re-initialised
to the original (entire) input set. Consequent linear moves result in
traversal through this entire search space. A subsequent binary search
move now results in trimming of the original search space.

5.8.2 Unistroke Gestures

Typically, BinPut moves are discrete in nature, and repeated incre-
ment/decrement moves are performed to provide input. For devices
supporting gestural input, we can also employ unistroke gestures,
where one continuous stroke is used for an input task. To illustrate
this, we use text entry on a touchscreen as an example.

In the original form, left and right swipes are for decrement and
increment moves respectively. Thus, to perform multiple consecutive
decrements or increments, multiple swipes in the same direction are
required. Instead, in the modified form, we can use a series of continu-
ous strokes for input. Vertical strokes (up and down) serve as repetition
gestures, and replicate the previous increment or decrement stroke.
The confirm command is triggered by ending the unistroke gesture, to
select the input.

As illustrated in Figure 5.10, we can perform three consecutive
decrements by combining a left-stroke and two vertical strokes (up +
down). At this stage, a right-stroke results in an increment move.

5.8 Customising BinPut for Specific Scenarios 207

MF

C

A

B

Left
(Decrement)

Right
(Increment)

Up(Decrement)Down(Decrement)
Touch-down
(Start)

Touch-up
(Confirm)

Figure 5.10: Unistroke gestures with BinPut. A continuous gesture is
used to traverse the alphabet tree (Figure 5.3) and enter the character
‘B’.

5.8.3 Weighted Input Sets

BinPut supports assignment of weights (or frequencies) to elements in
the input set. By doing so, we can potentially reduce the number of
moves required to input frequent values.

A naive approach to weighted input would be to rearrange the
search tree such that important elements are placed at a higher lev-
els. However, doing so either tampers with the inherent ordering of
elements, or can lead to drastically increasing the number of levels
(maximum moves), thus compromising the usability of the technique.

Instead, our weighting technique maintain the inherent ordering
of elements, irrespective of usage frequencies. We insert consecutive
repetitions of higher-frequency elements into the search space, hence
increasing the probability of reaching these elements faster. As soon
as a weighted element is encountered in the tree, all repetitions of
the element are eliminated to avoid repeated encounters. It should
be noted that this weighting technique offers no absolute guarantees
for the number of moves required to reach particular elements.

208 5 Facilitating Placement of Input Controls

5.9 Discussion

5.9.1 Summary

In this chapter, I presented BinPut as an input technique to facilitate
the placement of input controls on post-WIMP interfaces. BinPut em-
phasised type- and device-independence, making it a suitable candi-
date for a large number of input scenarios and interfaces. In addi-
tion to the standard BinPut mechanisms, we also discussed customisa-
tions, for specific conditions, that leveraged the versatility of the input
technique to further improve usability and performance. Our techni-
cal evaluation highlighted scalability aspects of BinPut, outlining the
number of moves required for varying input sets, and estimating task
completion time for different devices. Our user study with partici-
pants validated the transfer of learning, for the input technique, to
two input tasks and with two devices. Results from our studies are en-
couraging for the adoption of BinPut as a ubiquitous input technique,
for different post-WIMP interfaces. By providing a consistent solution
across the spectrum of available and emerging devices, modalities,
and input tasks, we can provide users with a consistent and scalable
input technique, which is both usable and performant. Since BinPut
can be applied to low-resolution devices, and alternate modalities, it
can also be beneficial for accessible input needs.

5.9.2 Revisiting the Research Question

This chapter focused on facilitating the placement of input controls
on post-WIMP interfaces. The research question, as introduced in the

5.9 Discussion 209

beginning of the chapter, was:
How can we facilitate the placement of standard input controls on post-

WIMP interfaces while maximising consistency across interfaces and reduc-
ing re-learning of the input technique?

Technical disparities, and limited input capabilities, offer chal-
lenges for placing typical input controls into post-WIMP interfaces.
Typically, for each device or modality, a novel input technique is de-
signed. This device-dependence reduces the scalability of input tech-
niques to other interfaces. Additionally, users are required to re-learn
different techniques when they encounter different interfaces. We ad-
dressed these challenges by presenting BinPut as a minimal input tech-
nique that could be applied by a large range of interfaces. BinPut facil-
itated the placement of input controls on a large range of post-WIMP
interfaces by minimising the device input and output requirements,
while ensuring consistent performance. The main technical contribu-
tions of this chapter are:

1. The BinPut algorithm for finding and entering a target element
within an ordered multi-dimensional input set.

2. BinPut type-implementations for various types of input, including
text or number entry, list selection, scrolling, and pointing.

3. BinPut device-implementations for different post-WIMP interfaces,
such as gestural and gaze input, touchscreens, and Arduino-
based sensors.

4. Customised instances of BinPut for specific use-cases and scenar-
ios, to improve the performance or usability.

Our evaluations supported the technical strengths of BinPut, and pro-

210 5 Facilitating Placement of Input Controls

vided evidence that the technique enabled transfer of learning across
interfaces.

5.9.3 Principles for Placing Input Controls

The key design principles derived from this work, towards the goal of
facilitating placement of input controls are:

1. Reduce the required footprint for input controls by minimising
the number of input events.

2. Avoid excess complexity in the technique’s implementation by
reformulating input as search, and adapting simple search algo-
rithms.

3. Enable consistency and learning transfer across different inter-
faces by reusing the same input controls and technique for dif-
ferent interface capabilities.

5.9.4 Limitations and Future Works

While BinPut facilitates placement of input across a diverse range of
interfaces, it also has certain limitations that are important to address.
Firstly, the technique is limited to ordinal input sets, and can not ap-
plied when for unordered input. Also, for small input sets (N < 10),
BinPut does not provide significant benefits over linear techniques.
Second, while BinPut aims to provide an efficient search mechanism
across various scenarios, it is not fine-tuned for a particular input type
or device. Other input techniques, specifically designed for certain in-
put tasks and devices can exhibit significantly better performance than

5.9 Discussion 211

BinPut. While BinPut can be customised to support some improve-
ments, these customisations need to be further investigated. Third, we
need to carefully consider the cognitive load of using BinPut for input
tasks. While the theoretical evaluation discussed this aspect, further
studies need to investigate this issue, and study the effect of learning
on reducing cognition time. Taking inspiration from BinPut, future
works can extend the concept of a universal input technique, and in-
vestigate strategies to improve performance while supporting device-
and type- independence. This can further facilitate placement of input
controls on new and diverse interfaces. For a new device or interface,
it could provide practitioners or makers with an immediate solution
to placing and enabling general-purpose input controls.

212 5 Facilitating Placement of Input Controls

213

PART III

Closing

215

Chapter 6

Discussion

6.1 Summary of Contributions

In this dissertation, I have presented my research work on placement
of interactive elements on user interfaces. As the title of this thesis
suggests, the goals are twofold:
1. Improving how interactive elements are placed on user interfaces,
more specifically GUIs.
2. Facilitating the placements of interactive elements on post-WIMP
interfaces.

In the first part of the thesis, I addressed placement challenges in
traditional graphical interfaces. The goal here was to improve the us-
ability of such interfaces. I made a distinction between design-time
improvements and use-time improvements, and presented two sys-
tems.

First, Sketchplore enabled interface designers to sketch and explore
optimised placements of interface elements while designing GUI lay-

216 6 Discussion

outs. It relaxed specification requirements from the designer, and au-
tomatically abstracted the design task from sketched layouts. The sys-
tem used a mixed-initiative approach to suggest improvements, and
did not override the designer’s decisions. These factors made the sys-
tem more suitable to human designers, and the fluid and uncertain
nature of early-stage sketching.

Second, Familiarisation took a user-sided approach, and automati-
cally improved interface layouts at use-time. It recorded a user’s his-
tory, and used this to model per-user familiarity. By generating tem-
plates based on this history, it could automatically restructure new and
unvisited layouts to improve visual recall time. Our studies with the
two systems showed that by applying computational models to gen-
erate or restructure an interface, user performance and aesthetics of
graphical layouts could be improved.

In the second part of this thesis, I addressed placement of inter-
actions in post-WIMP interfaces. Novel technologies and interaction
techniques supported by post-WIMP interfaces introduce additional
technical complexities and challenges while creating and specifying
the interface. The goal in the second part of this thesis, therefore, was
to facilitate placement of interactive elements in post-WIMP interfaces.

First, I investigated the placement of interactive electronics on
physical mediums. PaperPulse enabled non-expert users to specify and
create fully-interactive paper interfaces by placing a set of electronic
widgets onto visual designs. The end-to-end workflow eliminated the
need for programming skills or knowledge of electronics. It facilitated
the construction of customised and personalised special-purpose user
interfaces. I also briefly discussed extending the concept beyond pa-

6.2 Research Goals and Resulting Principles 217

per, to other mediums such as clothing and smart homes.
Lastly, to facilitate placement of general-purpose input controls, I

discussed the potential for of a universal input technique. BinPut pre-
sented a consistent cross-device input technique, which could be ap-
plied to different ordered input types. Using the technique, based on
an adaptation of binary search, input controls could be placed on a di-
verse set of post-WIMP interfaces, where it might otherwise be tedious
or implausible.

6.2 Research Goals and Resulting Principles

The four research questions, outlined in the introduction, and the rel-
evant contributions of this thesis towards addressing them are sum-
marised as follows:

1. How can we computationally support designers in the process of de-
sign exploration during early stages of placement of interactive elements on a
graphical interface?

Sketchplore (chapter 2) enabled designers to simultaneously
sketch and explore placement of elements on an interface with the aid
of a layout optimiser. As designers placed elements on the canvas, the
system suggested improvements and new layouts.

2. How can we adapt graphical interfaces for individual users’ by auto-
matically placing elements at familiar locations, at use-time, such that they
are consistent with a user’s mental model and enable faster visual recall?

Familiariser (chapter 3) captured user history, and modelled fa-
miliarity, to restructure new interfaces by placing elements at familiar
positions. As a result, visual search could be reduced on new layouts.

218 6 Discussion

3. How can we facilitate non-experts in placing interactive electronic el-
ements on special-purpose physical interfaces by obviating the needs for pro-
gramming and electronics skills?

PaperPulse (chapter 4) enabled non-expert users to place electron-
ics onto visual designs, and specify logic. The system generated re-
quired circuits and code, and assisted the users in realising fully in-
teractive artefacts. The chapter also briefly discussed other mediums
such as wearables and home interfaces.

4. How can we facilitate the placement of standard input controls on
post-WIMP interfaces while maximising consistency across interfaces and
reducing re-learning of the input technique?

BinPut (chapter 5) adapted binary search to present a consistent
and scalable input technique for different input types. It could be used
universally to place input controls across user interfaces with varying
capabilities.

Table 6.1 summarises the main contributions, corresponding re-
search goals, and key principles.

6.3 Limitations and Future Works

This thesis was motivated by the overall goal of better supporting the
processes through which user interfaces are constructed and realised.
During the course of my research, I addressed some key challenges,
and discussed how we could achieve this goal by improving or fa-
cilitating the placement of various interactive elements on the inter-
face. The resulting artefacts and concepts offered promising solutions
to tackling some of the research challenges. They also uncovered some

Interface Type Contribution Research Goal Key Principle

Graphical
User Interfaces

Sketchplore Improving visual layouts
at design-time

Combining sketching and exploration
using a layout optimiser and
predictive models

Familiarisation Improving visual layouts
at use-time

Recording user history and modelling
familiarity to automatically restructure
new and unvisited designs

Post-WIMP
User Interfaces

PaperPulse Facilitating special-purpose
interfaces with electronics

End-to-end workflow eliminating need
for programming knowledge and
electronics skills

BinPut Facilitating standard input
controls across interfaces

Universal input technique with
minimal requirements to support
device- and type-independence

Table 6.1: Summary of contributions highlighting the research challenges, and key principles
applied for each case.

220 6 Discussion

limitations, and opened up promising opportunities for improvement
and future research endeavours.

The first part of the thesis discussed the improvement of GUI lay-
outs, and presented model-based tools and techniques as methods to
systematically improve the interface. In our work with GUI layouts,
we only addressed visual factors such as positioning, sizing, and com-
position. Other aspects of interaction, such as semantics between in-
terface elements, were not considered. There is much room for future
works to consider these as well, and apply similar techniques to im-
prove not just the visual composition, but the overall interaction flow
supported by GUI interfaces. Additionally, our work only addressed
single-screen interfaces such as the landing page of a website. Place-
ment issues across multiple screens was not addressed. This can par-
tially be attributed to the characteristics and limitations of the models
used for generating interface layouts. It can be beneficial to further
improve computational models, to address a larger range of GUI in-
terfaces.

In the second part of the thesis, I discussed post-WIMP and physi-
cal user interfaces. chapter 4 focussed on paper interfaces, and briefly
discussed clothing and home interfaces. I presented promising end-to-
end approaches to facilitate the construction of such interfaces. How-
ever, the discussion was limited to only these categories of post-WIMP
interfaces. More effort needs to be invested in conceiving general-
isable approaches, and a unifying framework, such that they can be
applied to a more diverse set of post-WIMP interfaces. Additionally,
while tools such as PaperPulse enabled users to create fully-functional
interfaces, it did not support them in improving their designs. The

6.3 Limitations and Future Works 221

first part of this thesis highlighted the benefits of model-based ap-
proaches to improving graphical interfaces. It would be beneficial to
apply such approaches to post-WIMP interfaces. This could aid in
compensating for the lack of design knowledge of end-users, or for
speeding up the design and assembly process. To achieve this, we
need to further study computational models that can automatically
generate and evaluate such interfaces. Personally, in the long term, I
believe that hyper-customisation and personalisation will drive future
improvements, making a user interface better for each person using it,
and thus making UIs better for all users. Like their users, interfaces
should evolve and adapt over time, constantly improving themselves.
To achieve this goal, large-scale efforts will be needed to further ex-
plore how interfaces are designed, evaluated, and adapted to fit the
immediate needs and requirements.

222 6 Discussion

223

Appendix A

Nederlandstalige Samenvatting

The following is an unofficial translation of the thesis abstract. It
might contain grammatical or textual errors. Please refer to the orig-
inal abstract (in English) for an accurate version.

Een gebruikersinterface is het primaire gemiddelde waarmee een
gebruiker interactie heeft met een computer. Interactieve elementen,
geplaatst op een interface, bepalen de reikwijdte van interacties die
aan gebruikers worden geboden. Dit proefschrift onderzoekt plaats-
ingskwesties die centraal staan in het ontwerp van gebruikersinter-
faces. Het primaire doel is het ondersteunen van de constructie van
gebruikersinterfaces door de plaatsing van interactieve elementen op
(1) grafische gebruikersinterfaces (GUI’s) en (2) post-WIMP gebruik-
ersinterfaces te verbeteren of te vergemakkelijken.

GUI’s zijn de meest gebruikte methode voor interactie met com-
puters. Ze bestaan uit interactieve elementen die zijn georganiseerd
in een visuele interface-indeling. Verbetering van de constructie
van interface-lay-outs heeft een positieve invloed op de gebruiker-

224 A Nederlandstalige Samenvatting

sprestaties en perceptie van de interface. Het objectief verbeteren van
de plaatsing van elementen is echter niet-triviaal. Het eerste deel van
mijn proefschrift gaat over uitdagingen in de richting van improvement
plaatsing op GUI-lay-outs. Hiertoe lever ik twee belangrijke bijdragen.
In Sketchplore onderzoek ik ontwerp-tijdverbeteringen door interface-
ontwerpers in staat te stellen om lay-outs te schetsen en te verkennen
met behulp van een interactieve optimizer. In Familiariser bespreek ik
een gebruikerstijdaanpak om plaatsing voor individuele gebruikers te
verbeteren door beginselen van bekendheid toe te passen.

Post-WIMP-interfaces gaan verder dan het GUI-paradigma en ope-
nen nieuwe interactiemogelijkheden. Ze ondersteunen een groter aan-
tal interactieve elementen, zoals sensoren en actuatoren. Vanwege
de toegevoegde technische complexiteit, kan het een uitdaging zijn
om interactieve elementen op dergelijke interfaces te plaatsen. Het
tweede deel van dit proefschrift richt zich op het vergemakkelijken
van de plaatsing van interactiviteit op post-WIMP-interfaces en lev-
ert twee bijdragen aan het aanpakken van plaatsingsuitdagingen. Ik
onderzoek de plaatsing van interactieve elektronische elementen op
fysieke interfaces. Ik presenteer PaperPulse als hulpmiddel voor niet-
experts om elektronica op papierinterfaces te plaatsen en de discussie
uit te breiden naar andere fysieke interfaces zoals wearables en smart
home interfaces. In BinPut bespreek ik de plaatsing van standaard
invoerbesturingselementen op een diverse reeks interfaces en een uni-
versele techniek die kan worden toegepast op verschillende soorten
invoer en apparaten.

De concepten en principes die worden besproken in het proef-
schrift dragen bij aan het aanpakken van plaatsingsproblemen die cen-

225

traal staan in de constructie van gebruikersinterfaces. Ze kunnen re-
sulteren in ontwerpinterfaces die performant zijn en die een breed
scala aan interacties ondersteunen. Kwantitatieve en kwalitatieve
evaluaties van de resulterende hulpmiddelen en technieken leveren
bewijs voor de benaderingen die in dit proefschrift worden gepresen-
teerd.

226 A Nederlandstalige Samenvatting

227

Bibliography

[1] JONATHAN ACEITUNO, GÉRY CASIEZ, and NICOLAS ROUSSEL.
How low can you go?: Human limits in small unidirectional
mouse movements. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’13, pages 1383–1386.
ACM, New York, NY, USA, 2013. ISBN 978-1-4503-1899-0. doi:
10.1145/2470654.2466182.

[2] JELCO ADAMCZYK, KASHYAP TODI (ADVISOR), and KRIS
LUYTEN (PROMOTER). Easyhome: (re)-designing your home in-
terfaces. Bachelor Thesis. 2016.

[3] CHRISTOPH AMMA, MARCUS GEORGI, and TANJA SCHULTZ.
Airwriting: Hands-free mobile text input by spotting and con-
tinuous recognition of 3d-space handwriting with inertial sen-
sors. In Proceedings of the 2012 16th Annual International Sym-
posium on Wearable Computers (ISWC), ISWC ’12, pages 52–59.
IEEE Computer Society, Washington, DC, USA, 2012. ISBN 978-
0-7695-4697-1. doi: 10.1109/ISWC.2012.21.

[4] JOHN R ANDERSON, D BOTHELL, C LEBIERE, and M MATESSA.
An integrated theory of list memory. Journal Of Memory And
Language, 38(4):341–380, 1998. ISSN 0749596X. doi: 10.1006/
jmla.1997.2553.

[5] JOHN R ANDERSON, JON M FINCHAM, and SCOTT DOUGLASS.
Practice and retention: A unifying analysis. Journal of Experimen-

228 Bibliography

tal Psychology-Learning Memory and Cognition, 25(5):1120–1136,
1999.

[6] GEORG APITZ and FRANÇOIS GUIMBRETIÈRE. Crossy: A
crossing-based drawing application. In Proceedings of the 17th
Annual ACM Symposium on User Interface Software and Technology,
UIST ’04, pages 3–12. ACM, New York, NY, USA, 2004. ISBN 1-
58113-957-8. doi: 10.1145/1029632.1029635.

[7] YIGAL ARENS, LAWRENCE MILLER, STUART C. SHAPIRO, and
NORMAN K. SONDHEIMER. Automatic construction of user-
interface displays. In Proceedings of the Seventh AAAI National
Conference on Artificial Intelligence, AAAI’88, pages 808–813.
AAAI Press, 1988.

[8] SEOK-HYUNG BAE, RAVIN BALAKRISHNAN, and KARAN
SINGH. Ilovesketch: As-natural-as-possible sketching system
for creating 3d curve models. In Proceedings of the 21st Annual
ACM Symposium on User Interface Software and Technology, UIST
’08, pages 151–160. ACM, New York, NY, USA, 2008. ISBN 978-
1-59593-975-3. doi: 10.1145/1449715.1449740.

[9] GILLES BAILLY, ANTTI OULASVIRTA, TIMO KÖTZING, and SAB-
RINA HOPPE. Menuoptimizer: Interactive optimization of menu
systems. In Proceedings of the 26th Annual ACM Symposium on
User Interface Software and Technology, UIST ’13, pages 331–342.
ACM, New York, NY, USA, 2013. ISBN 978-1-4503-2268-3. doi:
10.1145/2501988.2502024.

[10] HELEN Y. BALINSKY. Evaluating interface aesthetics: measure
of symmetry. In Electronic Imaging 2006, pages 607–608. Interna-
tional Society for Optics and Photonics, 2006.

[11] HELEN Y. BALINSKY, ANTHONY J. WILEY, and MATTHEW C.
ROBERTS. Aesthetic measure of alignment and regularity. In
Proceedings of the 9th ACM Symposium on Document Engineering,

Bibliography 229

DocEng ’09, pages 56–65. ACM, New York, NY, USA, 2009. ISBN
978-1-60558-575-8. doi: 10.1145/1600193.1600207.

[12] RAFAEL BALLAGAS, MEREDITH RINGEL, MAUREEN STONE,
and JAN BORCHERS. istuff: A physical user interface toolkit
for ubiquitous computing environments. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’03, pages 537–544. ACM, New York, NY, USA, 2003. ISBN 1-
58113-630-7. doi: 10.1145/642611.642705.

[13] AYAH BDEIR and PAUL ROTHMAN. Electronics as material: Lit-
tlebits. In Proceedings of the Sixth International Conference on Tan-
gible, Embedded and Embodied Interaction, TEI ’12, pages 371–374.
ACM, New York, NY, USA, 2012. ISBN 978-1-4503-1174-8. doi:
10.1145/2148131.2148220.

[14] ANATOLE BECK. On the linear search problem. Israel Journal of
Mathematics, 2(4):221–228, 1964. ISSN 1565-8511. doi: 10.1007/
BF02759737.

[15] BRENT BERGHMANS, AXEL FAES, MATTHIJS KAMINSKI, and
KASHYAP TODI. Household survival: Immersive room-sized
gaming using everyday objects as weapons. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Com-
puting Systems, CHI EA ’16, pages 168–171. ACM, New York,
NY, USA, 2016. ISBN 978-1-4503-4082-3. doi: 10.1145/2851581.
2890372.

[16] C. M. BESHERS and S. FEINER. Scope: Automated generation
of graphical interfaces. In Proceedings of the 2Nd Annual ACM
SIGGRAPH Symposium on User Interface Software and Technology,
UIST ’89, pages 76–85. ACM, New York, NY, USA, 1989. ISBN
0-89791-335-3. doi: 10.1145/73660.73670.

[17] DAVID M. BLEI. Probabilistic topic models. Commun. ACM,

230 Bibliography

55(4):77–84, 2012. ISSN 0001-0782. doi: 10.1145/2133806.
2133826.

[18] FLORIAN BLOCK, MICHAEL HALLER, HANS GELLERSEN, CARL
GUTWIN, and MARK BILLINGHURST. Voodoosketch: Extend-
ing interactive surfaces with adaptable interface palettes. In Pro-
ceedings of the 2Nd International Conference on Tangible and Embed-
ded Interaction, TEI ’08, pages 55–58. ACM, New York, NY, USA,
2008. ISBN 978-1-60558-004-3. doi: 10.1145/1347390.1347404.

[19] FRANÇOIS BODART, ANNE-MARIE HENNEBERT, JEAN-MARIE
LEHEUREUX, and JEAN VANDERDONCKT. Towards a dynamic
strategy for computer-aided visual placement. In Proceedings of
the Workshop on Advanced Visual Interfaces, AVI ’94, pages 78–87.
ACM, New York, NY, USA, 1994. ISBN 0-89791-733-2. doi: 10.
1145/192309.192328.

[20] H. BOTTENBRUCH. Structure and use of algol 60. J. ACM,
9(2):161–221, 1962. ISSN 0004-5411. doi: 10.1145/321119.321120.

[21] RAINER E. BURKHARD and J. OFFERMAN. Entwurf von schreib-
maschinentastaturen mittels quadratischer zuordnungsprob-
leme. Operations Res, 21:B121–B132, 1977.

[22] ALEX BUTLER, SHAHRAM IZADI, and STEVE HODGES.
Sidesight: Multi-"touch" interaction around small devices. In
Proceedings of the 21st Annual ACM Symposium on User Interface
Software and Technology, UIST ’08, pages 201–204. ACM, New
York, NY, USA, 2008. ISBN 978-1-59593-975-3. doi: 10.1145/
1449715.1449746.

[23] BILL BUXTON. Sketching User Experiences: Getting the Design
Right and the Right Design. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2007. ISBN 0123740371, 9780123740373.

[24] WILLIAM BUXTON and RICHARD SNIDERMAN. Iteration in the
design of the human-computer interface. In Proceedings of the

Bibliography 231

13th Annual Meeting of the Human Factors Association of Canada,
volume 7281, page 37. 1980.

[25] ZOYA BYLINSKII, NAM WOOK KIM, PETER O’DONOVAN, SAMI
ALSHEIKH, SPANDAN MADAN, HANSPETER PFISTER, FREDO
DURAND, BRYAN RUSSELL, and AARON HERTZMANN. Learn-
ing visual importance for graphic designs and data visualiza-
tions. In Proceedings of the 30th Annual ACM Symposium on
User Interface Software and Technology, UIST ’17, pages 57–69.
ACM, New York, NY, USA, 2017. ISBN 978-1-4503-4981-9. doi:
10.1145/3126594.3126653.

[26] D. A. CARTER and J. DIAZ. The Elements of Pop-up: A Pop-Up
Book For Aspiring Paper Engineers. Little Simon, 1999.

[27] XIANG ’ANTHONY’ CHEN, TOVI GROSSMAN, and GEORGE
FITZMAURICE. Swipeboard: A text entry technique for ultra-
small interfaces that supports novice to expert transitions. In
Proceedings of the 27th Annual ACM Symposium on User Interface
Software and Technology, UIST ’14, pages 615–620. ACM, New
York, NY, USA, 2014. ISBN 978-1-4503-3069-5. doi: 10.1145/
2642918.2647354.

[28] MARVIN M CHUN and YUHONG JIANG. Contextual cueing: Im-
plicit learning and memory of visual context guides spatial at-
tention. Cognitive psychology, 36(1):28–71, 1998.

[29] A. COCKBURN, P. QUINN, C. GUTWIN, G. RAMOS, and
J. LOOSER. Air pointing: Design and evaluation of spatial
target acquisition with and without visual feedback. Int. J.
Hum.-Comput. Stud., 69(6):401–414, 2011. ISSN 1071-5819. doi:
10.1016/j.ijhcs.2011.02.005.

[30] MARCELO COELHO, LYNDL HALL, JOANNA BERZOWSKA, and
PATTIE MAES. Pulp-based computing: A framework for build-
ing computers out of paper. In CHI ’09 Extended Abstracts on

232 Bibliography

Human Factors in Computing Systems, CHI EA ’09, pages 3527–
3528. ACM, New York, NY, USA, 2009. ISBN 978-1-60558-247-4.
doi: 10.1145/1520340.1520525.

[31] DANIEL COHEN-OR, OLGA SORKINE, RAN GAL, TOMMER LEY-
VAND, and YING-QING XU. Color harmonization. In ACM SIG-
GRAPH 2006 Papers, SIGGRAPH ’06, pages 624–630. ACM, New
York, NY, USA, 2006. ISBN 1-59593-364-6. doi: 10.1145/1179352.
1141933.

[32] NIGEL CROSS. Expertise in design: an overview. Design Studies,
25(5):427 – 441, 2004. ISSN 0142-694X. doi: https://doi.org/10.
1016/j.destud.2004.06.002. Expertise in Design.

[33] ANIND K. DEY, RAFFAY HAMID, CHRIS BECKMANN, IAN LI,
and DANIEL HSU. A cappella: Programming by demonstration
of context-aware applications. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’04, pages
33–40. ACM, New York, NY, USA, 2004. ISBN 1-58113-702-8.
doi: 10.1145/985692.985697.

[34] MORGAN DIXON and JAMES FOGARTY. Prefab: Implement-
ing advanced behaviors using pixel-based reverse engineering
of interface structure. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’10, pages 1525–1534.
ACM, New York, NY, USA, 2010. ISBN 978-1-60558-929-9. doi:
10.1145/1753326.1753554.

[35] AMINE DRIRA, HENRI PIERREVAL, and SONIA HAJRI-GABOUJ.
Facility layout problems: A survey. Annual Reviews in Control,
31(2):255–267, 2007.

[36] KARIM EL BATRAN and MARK D. DUNLOP. Enhancing klm
(keystroke-level model) to fit touch screen mobile devices. In
Proceedings of the 16th International Conference on Human-computer
Interaction with Mobile Devices & Services, MobileHCI ’14,

Bibliography 233

pages 283–286. ACM, New York, NY, USA, 2014. ISBN 978-1-
4503-3004-6. doi: 10.1145/2628363.2628385.

[37] ELECTRONINKS INC. Paperduino 2.0 with circuit
scribe. http://www.instructables.com/id/
Paperduino-20-with-Circuit-Scribe, 2013.

[38] DANIEL FALLMAN. The new good: Exploring the potential of
philosophy of technology to contribute to human-computer in-
teraction. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’11, pages 1051–1060. ACM, New
York, NY, USA, 2011. ISBN 978-1-4503-0228-9. doi: 10.1145/
1978942.1979099.

[39] STEVEN K. FEINER. A grid-based approach to automating dis-
play layout. In Proceedings on Graphics Interface ’88, pages 192–
197. Canadian Information Processing Society, Toronto, Ont.,
Canada, Canada, 1988.

[40] PAUL M FITTS. The information capacity of the human motor
system in controlling the amplitude of movement. Journal of ex-
perimental psychology, 47(6):381, 1954.

[41] ADAM FOURNEY and MICHAEL TERRY. Picl: Portable in-circuit
learner. In Proceedings of the 25th Annual ACM Symposium on User
Interface Software and Technology, UIST ’12, pages 569–578. ACM,
New York, NY, USA, 2012. ISBN 978-1-4503-1580-7. doi: 10.
1145/2380116.2380188.

[42] PETER A FRENSCH. Composition during serial learning: A serial
position effect. JOURNAL OF EXPERIMENTAL PSYCHOLOGY
LEARNING MEMORY AND COGNITION, 20:423–423, 1994.

[43] KRZYSZTOF GAJOS and DANIEL S. WELD. Supple: Automati-
cally generating user interfaces. In Proceedings of the 9th Interna-
tional Conference on Intelligent User Interfaces, IUI ’04, pages 93–

http://www.instructables.com/id/Paperduino-20-with-Circuit-Scribe
http://www.instructables.com/id/Paperduino-20-with-Circuit-Scribe

234 Bibliography

100. ACM, New York, NY, USA, 2004. ISBN 1-58113-815-6. doi:
10.1145/964442.964461.

[44] KRZYSZTOF Z. GAJOS, MARY CZERWINSKI, DESNEY S. TAN,
and DANIEL S. WELD. Exploring the design space for adaptive
graphical user interfaces. AVI ’06, pages 201–208. ACM, New
York, NY, USA, 2006. ISBN 1-59593-353-0. doi: 10.1145/1133265.
1133306.

[45] KRZYSZTOF Z. GAJOS, JING JING LONG, and DANIEL S. WELD.
Automatically generating custom user interfaces for users with
physical disabilities. In Proceedings of the 8th International ACM
SIGACCESS Conference on Computers and Accessibility, Assets ’06,
pages 243–244. ACM, New York, NY, USA, 2006. ISBN 1-59593-
290-9. doi: 10.1145/1168987.1169036.

[46] KRZYSZTOF Z. GAJOS, JACOB O. WOBBROCK, and DANIEL S.
WELD. Automatically generating user interfaces adapted to
users’ motor and vision capabilities. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software and Technol-
ogy, UIST ’07, pages 231–240. ACM, New York, NY, USA, 2007.
ISBN 978-1-59593-679-0. doi: 10.1145/1294211.1294253.

[47] IVÁN E. GONZÁLEZ, JACOB O. WOBBROCK, DUEN HORNG
CHAU, ANDREW FAULRING, and BRAD A. MYERS. Eyes on
the road, hands on the wheel: Thumb-based interaction tech-
niques for input on steering wheels. In Proceedings of Graphics
Interface 2007, GI ’07, pages 95–102. ACM, New York, NY, USA,
2007. ISBN 978-1-56881-337-0. doi: 10.1145/1268517.1268535.

[48] SAUL GREENBERG and CHESTER FITCHETT. Phidgets: Easy de-
velopment of physical interfaces through physical widgets. In
Proceedings of the 14th Annual ACM Symposium on User Interface
Software and Technology, UIST ’01, pages 209–218. ACM, New
York, NY, USA, 2001. ISBN 1-58113-438-X. doi: 10.1145/502348.
502388.

Bibliography 235

[49] SAUL GREENBERG and IAN H. WITTEN. Adaptive personalized
interfaces—a question of viability. Behaviour & Information Tech-
nology, 4(1):31–45, 1985. doi: 10.1080/01449298508901785.

[50] MARK D. GROSS and ELLEN YI-LUEN DO. Ambiguous inten-
tions: A paper-like interface for creative design. In Proceedings
of the 9th Annual ACM Symposium on User Interface Software and
Technology, UIST ’96, pages 183–192. ACM, New York, NY, USA,
1996. ISBN 0-89791-798-7. doi: 10.1145/237091.237119.

[51] TOVI GROSSMAN, XIANG ANTHONY CHEN, and GEORGE FITZ-
MAURICE. Typing on glasses: Adapting text entry to smart eye-
wear. In Proceedings of the 17th International Conference on Human-
Computer Interaction with Mobile Devices and Services, MobileHCI
’15, pages 144–152. ACM, New York, NY, USA, 2015. ISBN 978-
1-4503-3652-9. doi: 10.1145/2785830.2785867.

[52] TOVI GROSSMAN and GEORGE FITZMAURICE. Toolclips: An in-
vestigation of contextual video assistance for functionality un-
derstanding. In CHI ’10, CHI ’10, pages 1515–1524. ACM, New
York, NY, USA, 2010. ISBN 978-1-60558-929-9. doi: 10.1145/
1753326.1753552.

[53] YOSHIKO HABUCHI, MUNEO KITAJIMA, and HARUHIKO
TAKEUCHI. Comparison of eye movements in searching for
easy-to-find and hard-to-find information in a hierarchically or-
ganized information structure. In Proceedings of the 2008 Sympo-
sium on Eye Tracking Research & Applications, ETRA ’08, pages
131–134. ACM, New York, NY, USA, 2008. ISBN 978-1-59593-
982-1. doi: 10.1145/1344471.1344505.

[54] PIERRE HANSEN and NENAD MLADENOVIĆ. Variable neigh-
borhood search: Principles and applications. European journal of
operational research, 130(3):449–467, 2001.

236 Bibliography

[55] PETER E HART, NILS J NILSSON, and BERTRAM RAPHAEL. A
formal basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

[56] BJÖRN HARTMANN, LEITH ABDULLA, MANAS MITTAL, and
SCOTT R. KLEMMER. Authoring sensor-based interactions by
demonstration with direct manipulation and pattern recogni-
tion. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’07, pages 145–154. ACM, New York,
NY, USA, 2007. ISBN 978-1-59593-593-9. doi: 10.1145/1240624.
1240646.

[57] BJÖRN HARTMANN, SCOTT R. KLEMMER, MICHAEL BERN-
STEIN, LEITH ABDULLA, BRANDON BURR, AVI ROBINSON-
MOSHER, and JENNIFER GEE. Reflective physical prototyping
through integrated design, test, and analysis. In Proceedings of
the 19th Annual ACM Symposium on User Interface Software and
Technology, UIST ’06, pages 299–308. ACM, New York, NY, USA,
2006. ISBN 1-59593-313-1. doi: 10.1145/1166253.1166300.

[58] MARC HASSENZAHL. The interplay of beauty, goodness, and us-
ability in interactive products. Hum.-Comput. Interact., 19(4):319–
349, 2008. ISSN 0737-0024. doi: 10.1207/s15327051hci1904_2.

[59] RICHARD NA HENSON. Unchained memory: Error patterns
rule out chaining models of immediate serial recall. The Quar-
terly Journal of Experimental Psychology: Section A, 49(1):80–115,
1996.

[60] STEVE HODGES, JAMES SCOTT, SUE SENTANCE, COLIN MILLER,
NICOLAS VILLAR, SCARLET SCHWIDERSKI-GROSCHE, KERRY
HAMMIL, and STEVEN JOHNSTON. .net gadgeteer: A new plat-
form for k-12 computer science education. In Proceeding of the
44th ACM Technical Symposium on Computer Science Education,

Bibliography 237

SIGCSE ’13, pages 391–396. ACM, New York, NY, USA, 2013.
ISBN 978-1-4503-1868-6. doi: 10.1145/2445196.2445315.

[61] STEVE HODGES, NICOLAS VILLAR, NICHOLAS CHEN, TUSHAR
CHUGH, JIE QI, DIANA NOWACKA, and YOSHIHIRO KAWA-
HARA. Circuit stickers: Peel-and-stick construction of interac-
tive electronic prototypes. In Proceedings of the 32Nd Annual
ACM Conference on Human Factors in Computing Systems, CHI ’14,
pages 1743–1746. ACM, New York, NY, USA, 2014. ISBN 978-1-
4503-2473-1. doi: 10.1145/2556288.2557150.

[62] DAVID HOLMAN and ROEL VERTEGAAL. Tactiletape: Low-cost
touch sensing on curved surfaces. In Proceedings of the 24th
Annual ACM Symposium Adjunct on User Interface Software and
Technology, UIST ’11 Adjunct, pages 17–18. ACM, New York,
NY, USA, 2011. ISBN 978-1-4503-1014-7. doi: 10.1145/2046396.
2046406.

[63] ERIC HORVITZ. Principles of mixed-initiative user interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’99, pages 159–166. ACM, New York, NY, USA,
1999. ISBN 0-201-48559-1. doi: 10.1145/302979.303030.

[64] SCOTT E. HUDSON and JENNIFER MANKOFF. Rapid construc-
tion of functioning physical interfaces from cardboard, thumb-
tacks, tin foil and masking tape. In Proceedings of the 19th Annual
ACM Symposium on User Interface Software and Technology, UIST
’06, pages 289–298. ACM, New York, NY, USA, 2006. ISBN 1-
59593-313-1. doi: 10.1145/1166253.1166299.

[65] POIKA ISOKOSKI and ROOPE RAISAMO. : A rationale and an
example. In Proceedings of the Working Conference on Advanced Vi-
sual Interfaces, AVI ’00, pages 76–83. ACM, New York, NY, USA,
2000. ISBN 1-58113-252-2. doi: 10.1145/345513.345262.

238 Bibliography

[66] LAURENT ITTI and CHRISTOF KOCH. A saliency-based search
mechanism for overt and covert shifts of visual attention. Vision
research, 40(10):1489–1506, 2000.

[67] CHRISTIAN JANSSEN, ANETTE WEISBECKER, and JÜRGEN
ZIEGLER. Generating user interfaces from data models and dia-
logue net specifications. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing Systems, CHI
’93, pages 418–423. ACM, New York, NY, USA, 1993. ISBN 0-
89791-575-5. doi: 10.1145/169059.169335.

[68] GABE JOHNSON, MARK D. GROSS, JASON HONG, and ELLEN
YI-LUEN DO. Computational support for sketching in design:
A review. Found. Trends Hum.-Comput. Interact., 2(1):1–93, 2009.
ISSN 1551-3955. doi: 10.1561/1100000013.

[69] JUSSI P. P. JOKINEN, SAYAN SARCAR, ANTTI OULASVIRTA,
CHAKLAM SILPASUWANCHAI, ZHENXIN WANG, and XIANGSHI
REN. Modelling learning of new keyboard layouts. In Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing
Systems, CHI ’17, pages 4203–4215. ACM, New York, NY, USA,
2017. ISBN 978-1-4503-4655-9. doi: 10.1145/3025453.3025580.

[70] LEVENT BURAK KARA, CHRIS M. D’ERAMO, and KENJI SHI-
MADA. Pen-based styling design of 3d geometry using concept
sketches and template models. In Proceedings of the 2006 ACM
Symposium on Solid and Physical Modeling, SPM ’06, pages 149–
160. ACM, New York, NY, USA, 2006. ISBN 1-59593-358-1. doi:
10.1145/1128888.1128909.

[71] YOSHIHIRO KAWAHARA, STEVE HODGES, BENJAMIN S. COOK,
CHENG ZHANG, and GREGORY D. ABOWD. Instant inkjet cir-
cuits: Lab-based inkjet printing to support rapid prototyping of
ubicomp devices. In Proceedings of the 2013 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, UbiComp

Bibliography 239

’13, pages 363–372. ACM, New York, NY, USA, 2013. ISBN 978-
1-4503-1770-2. doi: 10.1145/2493432.2493486.

[72] YOSHIHIRO KAWAHARA, STEVE HODGES, BENJAMIN S. COOK,
CHENG ZHANG, and GREGORY D. ABOWD. Instant inkjet cir-
cuits: Lab-based inkjet printing to support rapid prototyping of
ubicomp devices. In Proceedings of the 2013 ACM International
Joint Conference on Pervasive and Ubiquitous Computing, UbiComp
’13, pages 363–372. ACM, New York, NY, USA, 2013. ISBN 978-
1-4503-1770-2. doi: 10.1145/2493432.2493486.

[73] RUBAIAT HABIB KAZI, FANNY CHEVALIER, TOVI GROSSMAN,
and GEORGE FITZMAURICE. Kitty: Sketching dynamic and in-
teractive illustrations. In Proceedings of the 27th Annual ACM
Symposium on User Interface Software and Technology, UIST ’14,
pages 395–405. ACM, New York, NY, USA, 2014. ISBN 978-1-
4503-3069-5. doi: 10.1145/2642918.2647375.

[74] KENNETH L. KELLY. Twenty-two colors of maximum contrast.
Color Engineering, 3(26):26–27, 1965.

[75] ANDRUID KERNE, WILLIAM A. HAMILTON, and ZACHARY O.
TOUPS. Culturally based design: Embodying trans-surface in-
teraction in rummy. In Proceedings of the ACM 2012 Conference on
Computer Supported Cooperative Work, CSCW ’12, pages 509–518.
ACM, New York, NY, USA, 2012. ISBN 978-1-4503-1086-4. doi:
10.1145/2145204.2145284.

[76] DAVID E. KIERAS and ANTHONY J. HORNOF. Towards accu-
rate and practical predictive models of active-vision-based vi-
sual search. In Proceedings of the 32Nd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’14, pages 3875–3884.
ACM, New York, NY, USA, 2014. ISBN 978-1-4503-2473-1. doi:
10.1145/2556288.2557324.

240 Bibliography

[77] WON CHUL KIM and JAMES D. FOLEY. Don: User interface pre-
sentation design assistant. In Proceedings of the 3rd Annual ACM
SIGGRAPH Symposium on User Interface Software and Technology,
UIST ’90, pages 10–20. ACM, New York, NY, USA, 1990. ISBN
0-89791-410-4. doi: 10.1145/97924.97926.

[78] EILEEN KOWLER. Eye movements: The past 25years. Vision
research, 51(13):1457–1483, 2011.

[79] PER-OLA KRISTENSSON and SHUMIN ZHAI. Shark2: A large
vocabulary shorthand writing system for pen-based computers.
In Proceedings of the 17th Annual ACM Symposium on User Inter-
face Software and Technology, UIST ’04, pages 43–52. ACM, New
York, NY, USA, 2004. ISBN 1-58113-957-8. doi: 10.1145/1029632.
1029640.

[80] HAROLD W KUHN. The hungarian method for the assignment
problem. Naval Research Logistics (NRL), 2(1-2):83–97, 1955.

[81] RANJITHA KUMAR, ARVIND SATYANARAYAN, CESAR TORRES,
MAXINE LIM, SALMAN AHMAD, SCOTT R. KLEMMER, and
JERRY O. TALTON. Webzeitgeist: Design mining the web. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, pages 3083–3092. ACM, New York, NY, USA,
2013. ISBN 978-1-4503-1899-0. doi: 10.1145/2470654.2466420.

[82] RANJITHA KUMAR, JERRY O. TALTON, SALMAN AHMAD, and
SCOTT R. KLEMMER. Bricolage: Example-based retargeting for
web design. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, pages 2197–2206. ACM,
New York, NY, USA, 2011. ISBN 978-1-4503-0228-9. doi: 10.
1145/1978942.1979262.

[83] JAMES A. LANDAY and BRAD A. MYERS. Interactive sketching
for the early stages of user interface design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI

Bibliography 241

’95, pages 43–50. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 1995. ISBN 0-201-84705-1. doi: 10.1145/
223904.223910.

[84] TALIA LAVIE and JOACHIM MEYER. Benefits and costs of adap-
tive user interfaces. Int. J. Hum.-Comput. Stud., 68(8):508–524,
2010. ISSN 1071-5819. doi: 10.1016/j.ijhcs.2010.01.004.

[85] JOHNNY C. LEE, DANIEL AVRAHAMI, SCOTT E. HUDSON, JODI
FORLIZZI, PAUL H. DIETZ, and DARREN LEIGH. The calder
toolkit: Wired and wireless components for rapidly prototyping
interactive devices. In Proceedings of the 5th Conference on De-
signing Interactive Systems: Processes, Practices, Methods, and Tech-
niques, DIS ’04, pages 167–175. ACM, New York, NY, USA, 2004.
ISBN 1-58113-787-7. doi: 10.1145/1013115.1013139.

[86] JUHA LEHIKOINEN and MIKA RÖYKKEE. Binscroll: A rapid se-
lection technique for alphanumeric lists. In CHI ’00 Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA ’00, pages
261–262. ACM, New York, NY, USA, 2000. ISBN 1-58113-248-4.
doi: 10.1145/633292.633445.

[87] LISSA LIGHT and PETER ANDERSON. Designing better key-
boards via simulated annealing. 1993.

[88] JAMES LIN, MARK W. NEWMAN, JASON I. HONG, and JAMES A.
LANDAY. Denim: Finding a tighter fit between tools and prac-
tice for web site design. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’00, pages 510–517.
ACM, New York, NY, USA, 2000. ISBN 1-58113-216-6. doi:
10.1145/332040.332486.

[89] SIMON LOK and STEVEN FEINER. A survey of automated lay-
out techniques for information presentations. In Proceedings of
SmartGraphics. 2001.

242 Bibliography

[90] SIMON LOK, STEVEN FEINER, and GARY NGAI. Evaluation of
visual balance for automated layout. In Proceedings of the 9th In-
ternational Conference on Intelligent User Interfaces, IUI ’04, pages
101–108. ACM, New York, NY, USA, 2004. ISBN 1-58113-815-6.
doi: 10.1145/964442.964462.

[91] SALVADOR GONZÁLEZ LÓPEZ, FRANCISCO MONTERO
SIMARRO, and PASCUAL GONZÁLEZ LÓPEZ. Balores: A
framework for quantitative user interface evaluation. In New
Trends in Interaction, Virtual Reality and Modeling, pages 127–143.
Springer, 2013.

[92] SUSAN LYSECKY and FRANK VAHID. Enabling nonexpert con-
struction of basic sensor-based systems. ACM Trans. Comput.-
Hum. Interact., 16(1):1:1–1:28, 2009. ISSN 1073-0516. doi: 10.
1145/1502800.1502801.

[93] I. SCOTT MACKENZIE, R. WILLIAM SOUKOREFF, and JOANNA
HELGA. 1 thumb, 4 buttons, 20 words per minute: Design and
evaluation of h4-writer. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, UIST ’11,
pages 471–480. ACM, New York, NY, USA, 2011. ISBN 978-1-
4503-0716-1. doi: 10.1145/2047196.2047258.

[94] SCOTT I. MACKENZIE. Fitts’ law as a research and design tool
in human-computer interaction. Human–Computer Interaction,
7(1):91–139, 1992.

[95] ATSUHIKO MAEDA, HIROHITO INAGAKI, and MASANOBU ABE.
Arrow tag: A direction-key-based technique for rapidly select-
ing hyperlinks while gazing at a screen. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’09, pages 1025–1028. ACM, New York, NY, USA, 2009. ISBN
978-1-60558-246-7. doi: 10.1145/1518701.1518857.

Bibliography 243

[96] ANDERS MARKUSSEN, MIKKEL RØNNE JAKOBSEN, and KASPER
HORNBÆK. Vulture: A mid-air word-gesture keyboard. In Pro-
ceedings of the 32Nd Annual ACM Conference on Human Factors in
Computing Systems, CHI ’14, pages 1073–1082. ACM, New York,
NY, USA, 2014. ISBN 978-1-4503-2473-1. doi: 10.1145/2556288.
2556964.

[97] BARBARA J. MEIER, ANNE MORGAN SPALTER, and DAVID B.
KARELITZ. Interactive color palette tools. IEEE Comput. Graph.
Appl., 24(3):64–72, 2004. ISSN 0272-1716. doi: 10.1109/MCG.
2004.1297012.

[98] DAVID A. MELLIS, SAM JACOBY, LEAH BUECHLEY, HANNAH
PERNER-WILSON, and JIE QI. Microcontrollers as material:
Crafting circuits with paper, conductive ink, electronic compo-
nents, and an "untoolkit". In Proceedings of the 7th International
Conference on Tangible, Embedded and Embodied Interaction, TEI ’13,
pages 83–90. ACM, New York, NY, USA, 2013. ISBN 978-1-4503-
1898-3. doi: 10.1145/2460625.2460638.

[99] BRAD MYERS, SCOTT E. HUDSON, and RANDY PAUSCH. Past,
present, and future of user interface software tools. ACM Trans.
Comput.-Hum. Interact., 7(1):3–28, 2000. ISSN 1073-0516. doi:
10.1145/344949.344959.

[100] BRAD A. MYERS, RISHI BHATNAGAR, JEFFREY NICHOLS,
CHOON HONG PECK, DAVE KONG, ROBERT MILLER, and
A. CHRIS LONG. Interacting at a distance: Measuring the per-
formance of laser pointers and other devices. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’02, pages 33–40. ACM, New York, NY, USA, 2002. ISBN
1-58113-453-3. doi: 10.1145/503376.503383.

[101] MARK W. NEWMAN and JAMES A. LANDAY. Sitemaps, story-
boards, and specifications: A sketch of web site design practice.

244 Bibliography

In Proceedings of the 3rd Conference on Designing Interactive Sys-
tems: Processes, Practices, Methods, and Techniques, DIS ’00, pages
263–274. ACM, New York, NY, USA, 2000. ISBN 1-58113-219-0.
doi: 10.1145/347642.347758.

[102] JEFFREY NICHOLS and TESSA LAU. Mobilization by demonstra-
tion: Using traces to re-author existing web sites. In Proceedings
of the 13th International Conference on Intelligent User Interfaces, IUI
’08, pages 149–158. ACM, New York, NY, USA, 2008. ISBN 978-
1-59593-987-6. doi: 10.1145/1378773.1378793.

[103] JEFFREY NICHOLS, BRAD A. MYERS, MICHAEL HIGGINS,
JOSEPH HUGHES, THOMAS K. HARRIS, RONI ROSENFELD, and
MATHILDE PIGNOL. Generating remote control interfaces for
complex appliances. In Proceedings of the 15th Annual ACM Sym-
posium on User Interface Software and Technology, UIST ’02, pages
161–170. ACM, New York, NY, USA, 2002. ISBN 1-58113-488-6.
doi: 10.1145/571985.572008.

[104] JEFFREY NICHOLS, BRAD A. MYERS, and BRANDON
ROTHROCK. Uniform: Automatically generating consistent
remote control user interfaces. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’06, pages
611–620. ACM, New York, NY, USA, 2006. ISBN 1-59593-372-7.
doi: 10.1145/1124772.1124865.

[105] JAKOB NIELSEN. Usability Engineering. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1993. ISBN 0125184050.

[106] DONALD A. NORMAN. The Design of Everyday Things. Basic
Books, Inc., New York, NY, USA, 2002. ISBN 9780465067107.

[107] PETER ODONOVAN, ASEEM AGARWALA, and AARON HERTZ-
MANN. Learning layouts for single-pagegraphic designs. IEEE
Transactions on Visualization and Computer Graphics, 20(8):1200–
1213, 2014. ISSN 1077-2626. doi: 10.1109/TVCG.2014.48.

Bibliography 245

[108] PETER O’DONOVAN, ASEEM AGARWALA, and AARON HERTZ-
MANN. Designscape: Design with interactive layout sugges-
tions. In Proceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems, CHI ’15, pages 1221–1224.
ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3145-6. doi:
10.1145/2702123.2702149.

[109] D. R. OLSEN, JR. A programming language basis for user in-
terface. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’89, pages 171–176. ACM, New York,
NY, USA, 1989. ISBN 0-89791-301-9. doi: 10.1145/67449.67485.

[110] STEPHEN ONEY, CHRIS HARRISON, AMY OGAN, and JASON
WIESE. Zoomboard: A diminutive qwerty soft keyboard using
iterative zooming for ultra-small devices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’13, pages 2799–2802. ACM, New York, NY, USA, 2013. ISBN
978-1-4503-1899-0. doi: 10.1145/2470654.2481387.

[111] ANTTI OULASVIRTA, ANNA REICHEL, WENBIN LI, YAN
ZHANG, MYROSLAV BACHYNSKYI, KEITH VERTANEN, and
PER OLA KRISTENSSON. Improving two-thumb text entry on
touchscreen devices. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’13, pages 2765–2774.
ACM, New York, NY, USA, 2013. ISBN 978-1-4503-1899-0. doi:
10.1145/2470654.2481383.

[112] STEVEN PEETERS, KASHYAP TODI (ADVISOR), and KRIS
LUYTEN (PROMOTER). The home logging toolkit. Bachelor The-
sis. 2017.

[113] HANNAH PERNER-WILSON, LEAH BUECHLEY, and MIKA
SATOMI. Handcrafting textile interfaces from a kit-of-no-parts.
In Proceedings of the Fifth International Conference on Tangible, Em-
bedded, and Embodied Interaction, TEI ’11, pages 61–68. ACM, New

246 Bibliography

York, NY, USA, 2011. ISBN 978-1-4503-0478-8. doi: 10.1145/
1935701.1935715.

[114] SIMON T. PERRAULT, ERIC LECOLINET, JAMES EAGAN, and
YVES GUIARD. Watchit: Simple gestures and eyes-free in-
teraction for wristwatches and bracelets. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’13, pages 1451–1460. ACM, New York, NY, USA, 2013. ISBN
978-1-4503-1899-0. doi: 10.1145/2470654.2466192.

[115] ANGEL R. PUERTA, HENRIK ERIKSSON, JOHN H. GENNARI, and
MARK A. MUSEN. Model-based automated generation of user
interfaces. In Proceedings of the Twelfth National Conference on Arti-
ficial Intelligence (Vol. 1), AAAI ’94, pages 471–477. American As-
sociation for Artificial Intelligence, Menlo Park, CA, USA, 1994.
ISBN 0-262-61102-3.

[116] JIE QI and LEAH BUECHLEY. Electronic popables: Exploring
paper-based computing through an interactive pop-up book. In
Proceedings of the Fourth International Conference on Tangible, Em-
bedded, and Embodied Interaction, TEI ’10, pages 121–128. ACM,
New York, NY, USA, 2010. ISBN 978-1-60558-841-4. doi: 10.
1145/1709886.1709909.

[117] JIE QI and LEAH BUECHLEY. Sketching in circuits: Design-
ing and building electronics on paper. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’14, pages 1713–1722. ACM, New York, NY, USA, 2014. ISBN
978-1-4503-2473-1. doi: 10.1145/2556288.2557391.

[118] RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-
pulse: An integrated approach for embedding electronics in pa-
per designs. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, pages 2457–2466.
ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3145-6. doi:
10.1145/2702123.2702487.

Bibliography 247

[119] RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-
pulse: An integrated approach for embedding electronics in pa-
per designs. In SIGGRAPH 2015: Studio, SIGGRAPH ’15, pages
3:1–3:1. ACM, New York, NY, USA, 2015. ISBN 978-1-4503-3637-
6. doi: 10.1145/2785585.2792694.

[120] RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-
pulse: An integrated approach for embedding electronics in pa-
per designs. In ACM SIGGRAPH 2015 Posters, SIGGRAPH ’15,
pages 9:1–9:1. ACM, New York, NY, USA, 2015. ISBN 978-1-
4503-3632-1. doi: 10.1145/2787626.2792650.

[121] RAF RAMAKERS, KASHYAP TODI, and KRIS LUYTEN. Paper-
pulse: An integrated approach to fabricating interactive paper.
In Proceedings of the 33rd Annual ACM Conference Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA ’15, pages
267–270. ACM, New York, NY, USA, 2015. ISBN 978-1-4503-
3146-3. doi: 10.1145/2702613.2725430.

[122] KEITH RAYNER. The 35th sir frederick bartlett lecture: Eye
movements and attention in reading, scene perception, and
visual search. Quarterly Journal of Experimental Psychology,
62(8):1457–1506, 2009.

[123] JOHN RHEINFRANK and SHELLEY EVENSON. Design languages.
In Bringing design to software, pages 63–85. ACM, 1996.

[124] RUTH ROSENHOLTZ, AMAL DORAI, and ROSALIND FREEMAN.
Do predictions of visual perception aid design? ACM Trans.
Appl. Percept., 8(2):12:1–12:20, 2011. ISSN 1544-3558. doi: 10.
1145/1870076.1870080.

[125] RUTH ROSENHOLTZ, YUANZHEN LI, and LISA NAKANO. Mea-
suring visual clutter. Journal of vision, 7(2):17, 2007.

248 Bibliography

[126] DARIO D SALVUCCI. An integrated model of eye movements
and visual encoding. Cogn. Syst. Res., 1(4):201–220, 2001. ISSN
1389-0417. doi: 10.1016/S1389-0417(00)00015-2.

[127] SAYAN SARCAR, JUSSI JOKINEN, ANTTI OULASVIRTA, XIANG-
SHI REN, CHAKLAM SILPASUWANCHAI, and ZHENXIN WANG.
Ability-based optimization: Designing smartphone text entry
interface for older adults. IEEE Pervasive Computing, 2018.

[128] GREG SAUL, CHENG XU, and MARK D. GROSS. Interactive
paper devices: End-user design & fabrication. In Proceedings
of the Fourth International Conference on Tangible, Embedded, and
Embodied Interaction, TEI ’10, pages 205–212. ACM, New York,
NY, USA, 2010. ISBN 978-1-60558-841-4. doi: 10.1145/1709886.
1709924.

[129] VALKYRIE SAVAGE, XIAOHAN ZHANG, and BJÖRN HART-
MANN. Midas: Fabricating custom capacitive touch sensors to
prototype interactive objects. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Technology, UIST
’12, pages 579–588. ACM, New York, NY, USA, 2012. ISBN 978-
1-4503-1580-7. doi: 10.1145/2380116.2380189.

[130] DOMINIK SCHMIDT, RAF RAMAKERS, ESBEN W. PEDERSEN,
JOHANNES JASPER, SVEN KÖHLER, AILEEN POHL, HANNES
RANTZSCH, ANDREAS RAU, PATRICK SCHMIDT, CHRISTOPH
STERZ, YANINA YURCHENKO, and PATRICK BAUDISCH. Kick-
ables: Tangibles for feet. In Proceedings of the 32Nd Annual
ACM Conference on Human Factors in Computing Systems, CHI ’14,
pages 3143–3152. ACM, New York, NY, USA, 2014. ISBN 978-1-
4503-2473-1. doi: 10.1145/2556288.2557016.

[131] MARTIN SCHMITZ, MOHAMMADREZA KHALILBEIGI,
MATTHIAS BALWIERZ, ROMAN LISSERMANN, MAX
MÜHLHÄUSER, and JÜRGEN STEIMLE. Capricate: A fabri-
cation pipeline to design and 3d print capacitive touch sensors

Bibliography 249

for interactive objects. In Proceedings of the 28th Annual ACM
Symposium on User Interface Software & Technology, UIST
’15, pages 253–258. ACM, New York, NY, USA, 2015. ISBN
978-1-4503-3779-3. doi: 10.1145/2807442.2807503.

[132] A. SEARS. Layout appropriateness: a metric for evaluating
user interface widget layout. IEEE Transactions on Software En-
gineering, 19(7):707–719, 1993. ISSN 0098-5589. doi: 10.1109/32.
238571.

[133] ANDREW SEARS, JULIE A JACKO, JOSEY CHU, and FRANCISCO
MORO. The role of visual search in the design of effective soft
keyboards. Behaviour & Information Technology, 20(3):159–166,
2001.

[134] CLAYTON SHEPARD, AHMAD RAHMATI, CHAD TOSSELL, LIN
ZHONG, and PHILLIP KORTUM. Livelab: Measuring wireless
networks and smartphone users in the field. SIGMETRICS
Perform. Eval. Rev., 38(3):15–20, 2011. ISSN 0163-5999. doi:
10.1145/1925019.1925023.

[135] MICHAEL SHORTER, JON ROGERS, and JOHN MCGHEE. En-
hancing everyday paper interactions with paper circuits. In Pro-
ceedings of the 2014 Conference on Designing Interactive Systems,
DIS ’14, pages 39–42. ACM, New York, NY, USA, 2014. ISBN
978-1-4503-2902-6. doi: 10.1145/2598510.2598584.

[136] SURYA P. SINGH and RENDUCHINTALA RK SHARMA. A re-
view of different approaches to the facility layout problems. The
International Journal of Advanced Manufacturing Technology, 30(5-
6):425–433, 2006.

[137] IVAN E. SUTHERLAND. Sketchpad: A man-machine graphical
communication system. In Proceedings of the May 21-23, 1963,

250 Bibliography

Spring Joint Computer Conference, AFIPS ’63 (Spring), pages 329–
346. ACM, New York, NY, USA, 1963. doi: 10.1145/1461551.
1461591.

[138] LUKE SWARTZ. Overwhelmed by technology: How did user
interface failures on board the uss vincennes lead to 290 dead.
Erişim tarihi, 25, 2001.

[139] MICHAEL TERRY, ELIZABETH D. MYNATT, KUMIYO NAKAKOJI,
and YASUHIRO YAMAMOTO. Variation in element and action:
Supporting simultaneous development of alternative solutions.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, CHI ’04, pages 711–718. ACM, New York, NY,
USA, 2004. ISBN 1-58113-702-8. doi: 10.1145/985692.985782.

[140] KASHYAP TODI, DONALD DEGRAEN, BRENT BERGHMANS,
AXEL FAES, MATTHIJS KAMINSKI, and KRIS LUYTEN. Purpose-
centric appropriation of everyday objects as game controllers. In
Proceedings of the CHI ’16 Extended Abstracts, CHI EA ’16, pages
2744–2750. ACM, New York, NY, USA, 2016. ISBN 978-1-4503-
4082-3. doi: 10.1145/2851581.2892448.

[141] KASHYAP TODI, JUSSI JOKINEN, KRIS LUYTEN, and ANTTI
OULASVIRTA. Familiarisation: Restructuring layouts with vi-
sual learning models. In Proceedings of the 2018 ACM Conference
on Interactive User Interfaces, IUI ’18. ACM, New York, NY, USA,
2018.

[142] KASHYAP TODI and KRIS LUYTEN. Suit up!: Enabling eyes-
free interactions on jacket buttons. In Proceedings of the Extended
Abstracts of the 32Nd Annual ACM Conference on Human Factors
in Computing Systems, CHI EA ’14, pages 1549–1554. ACM, New
York, NY, USA, 2014. ISBN 978-1-4503-2474-8. doi: 10.1145/
2559206.2581155.

Bibliography 251

[143] KASHYAP TODI and KRIS LUYTEN. Suit up!: Inconspicuous in-
teractions on jacket buttons. In Proceedings of the 2014 CHI Con-
ference Workshop on Inconspicuous Interactions, CHI EA ’14. ACM,
New York, NY, USA, 2014.

[144] KASHYAP TODI, KRIS LUYTEN, and ANDREW VANDE MOERE.
Making smart homes personal: Fabrication and customisation of
home interfaces. In Proceedings of the CHI ’15 Workshop on Smart
for Life: Designing Smart Home Technologies that Evolve with Users,
CHI EA ’15. 2015.

[145] KASHYAP TODI, DARYL WEIR, and ANTTI OULASVIRTA.
Sketchplore: Sketch and explore layout designs with an opti-
miser. In Proceedings of the 2016 CHI Conference Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’16, pages 3780–
3783. ACM, New York, NY, USA, 2016. ISBN 978-1-4503-4082-3.
doi: 10.1145/2851581.2890236.

[146] KASHYAP TODI, DARYL WEIR, and ANTTI OULASVIRTA.
Sketchplore: Sketch and explore with a layout optimiser. In Pro-
ceedings of the 2016 ACM Conference on Designing Interactive Sys-
tems, DIS ’16, pages 543–555. ACM, New York, NY, USA, 2016.
ISBN 978-1-4503-4031-1. doi: 10.1145/2901790.2901817.

[147] KASHYAP TODI, DARYL WEIR, and ANTTI OULASVIRTA.
Sketchplorer: A mixed-initiative tool for sketching and explor-
ing interactive layout designs. In Proceedings of the CHI ’17 Work-
shop on Mixed-Initiative Creative Interfaces. 2017.

[148] OUTI TUISKU, PÄIVI MAJARANTA, POIKA ISOKOSKI, and KARI-
JOUKO RÄIHÄ. Now dasher! dash away!: Longitudinal study of
fast text entry by eye gaze. In Proceedings of the 2008 Symposium
on Eye Tracking Research & Applications, ETRA ’08, pages 19–
26. ACM, New York, NY, USA, 2008. ISBN 978-1-59593-982-1.
doi: 10.1145/1344471.1344476.

252 Bibliography

[149] ANDRIES VAN DAM. Post-wimp user interfaces. Communications
of the ACM, 40(2):63–67, 1997.

[150] MARC VAN DROOGENBROECK and SÉBASTIEN PIÉRARD. Object
descriptors based on a list of rectangles: Method and algorithm.
In Proceedings of the 10th International Conference on Mathemati-
cal Morphology and Its Applications to Image and Signal Processing,
ISMM’11, pages 155–165. Springer-Verlag, Berlin, Heidelberg,
2011. ISBN 978-3-642-21568-1.

[151] MARTIJN VAN WELIE and GERRIT C VAN DER VEER. Pattern
languages in interaction design: Structure and organization. In
Proceedings of interact, volume 3, pages 1–5. 2003.

[152] JEAN M. VANDERDONCKT and FRANÇOIS BODART. Encapsu-
lating knowledge for intelligent automatic interaction objects se-
lection. In Proceedings of the INTERACT ’93 and CHI ’93 Confer-
ence on Human Factors in Computing Systems, CHI ’93, pages 424–
429. ACM, New York, NY, USA, 1993. ISBN 0-89791-575-5. doi:
10.1145/169059.169340.

[153] VASILIS VLACHOKYRIAKOS, ROB COMBER, KARIM LADHA,
NICK TAYLOR, PAUL DUNPHY, PATRICK MCCORRY, and
PATRICK OLIVIER. Postervote: Expanding the action reper-
toire for local political activism. In Proceedings of the 2014 Con-
ference on Designing Interactive Systems, DIS ’14, pages 795–804.
ACM, New York, NY, USA, 2014. ISBN 978-1-4503-2902-6. doi:
10.1145/2598510.2598523.

[154] DANIEL VOGEL and RAVIN BALAKRISHNAN. Distant freehand
pointing and clicking on very large, high resolution displays.
In Proceedings of the 18th Annual ACM Symposium on User Inter-
face Software and Technology, UIST ’05, pages 33–42. ACM, New
York, NY, USA, 2005. ISBN 1-59593-271-2. doi: 10.1145/1095034.
1095041.

Bibliography 253

[155] DAVID J. WARD, ALAN F. BLACKWELL, and DAVID J. C.
MACKAY. Dasher—a data entry interface using contin-
uous gestures and language models. In Proceedings of the 13th
Annual ACM Symposium on User Interface Software and Technol-
ogy, UIST ’00, pages 129–137. ACM, New York, NY, USA, 2000.
ISBN 1-58113-212-3. doi: 10.1145/354401.354427.

[156] MARK WEISER. The computer for the 21 st century. Scientific
american, 265(3):94–105, 1991.

[157] MAX WERTHEIMER. A brief introduction to gestalt, identifying
key theories and principles. Psychol Forsch, 4:301–350, 1923.

[158] L.G. WILLIAMS. A study of visual search using eye movement
recordings. Technical report, DTIC Document, 1966.

[159] JACOB O. WOBBROCK, SHAUN K. KANE, KRZYSZTOF Z. GAJOS,
SUSUMU HARADA, and JON FROEHLICH. Ability-based design:
Concept, principles and examples. ACM Trans. Access. Com-
put., 3(3):9:1–9:27, 2011. ISSN 1936-7228. doi: 10.1145/1952383.
1952384.

[160] JACOB O. WOBBROCK, BRAD A. MYERS, and JOHN A. KEMBEL.
Edgewrite: A stylus-based text entry method designed for high
accuracy and stability of motion. In Proceedings of the 16th Annual
ACM Symposium on User Interface Software and Technology, UIST
’03, pages 61–70. ACM, New York, NY, USA, 2003. ISBN 1-58113-
636-6. doi: 10.1145/964696.964703.

[161] JACOB O. WOBBROCK, ANDREW D. WILSON, and YANG LI.
Gestures without libraries, toolkits or training: A $1 recognizer
for user interface prototypes. In Proceedings of the 20th Annual
ACM Symposium on User Interface Software and Technology, UIST
’07, pages 159–168. ACM, New York, NY, USA, 2007. ISBN 978-
1-59593-679-0. doi: 10.1145/1294211.1294238.

254 Bibliography

[162] YIN YIN WONG. Rough and ready prototypes: Lessons from
graphic design. In Posters and Short Talks of the 1992 SIGCHI Con-
ference on Human Factors in Computing Systems, CHI ’92, pages
83–84. ACM, New York, NY, USA, 1992. doi: 10.1145/1125021.
1125094.

[163] SHENGXIANG YANG and XIN YAO. Population-based incre-
mental learning with associative memory for dynamic environ-
ments. Evolutionary Computation, IEEE Transactions on, 12(5):542–
561, 2008.

[164] YEONSOO YANG and SCOTT R. KLEMMER. Aesthetics mat-
ter: Leveraging design heuristics to synthesize visually satisfy-
ing handheld interfaces. In CHI ’09 Extended Abstracts on Hu-
man Factors in Computing Systems, CHI EA ’09, pages 4183–4188.
ACM, New York, NY, USA, 2009. ISBN 978-1-60558-247-4. doi:
10.1145/1520340.1520637.

[165] TOM YEH, TSUNG-HSIANG CHANG, and ROBERT C. MILLER.
Sikuli: Using gui screenshots for search and automation. In Pro-
ceedings of the 22Nd Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’09, pages 183–192. ACM, New York,
NY, USA, 2009. ISBN 978-1-60558-745-5. doi: 10.1145/1622176.
1622213.

[166] MATHIEU ZEN and JEAN VANDERDONCKT. Towards an evalu-
ation of graphical user interfaces aesthetics based on metrics. In
Research Challenges in Information Science (RCIS), 2014 IEEE Eighth
International Conference on, pages 1–12. IEEE, 2014.

[167] SHUMIN ZHAI, MICHAEL HUNTER, and BARTON A. SMITH.
Performance optimization of virtual keyboards. Human–
Computer Interaction, 17(2-3):229–269, 2002.

[168] G.K. ZIPF. Human behavior and the principle of least effort: an in-
troduction to human ecology. Addison-Wesley Press, 1949.

	Acknowledgements
	Abstract
	Scientific Contributions
	Research Collaboration Acknowledgements
	Introduction
	Interactive Elements for User Interfaces
	Improving Placement in Graphical User Interfaces
	Facilitating Placement in Post-WIMP User Interfaces
	Chapter Overview and Contributions

	I Improving Placement on GUIs
	Improving Design-Time Placement on Graphical Layouts
	Introduction
	The Placement Problem in GUI Layouts
	Sketching vs. Optimisation
	Research Question
	Sketchplore: Sketching and Exploring Layout Designs

	Background
	Sketching Tools and Interaction Techniques
	Heuristic and Data-Driven Methods for Layout Generation
	Metrics and Model-based Optimisation

	Walkthrough and Design Overview
	Walkthrough: Designing a Blog Page
	Overview of Interactions

	Predictive Models for Interactive Layouts
	Overview: The Colour Patches Task
	Visual Clutter
	Visual Search
	Target Acquisition
	Grid Quality
	Colour Harmony
	Scope and Limitations

	Dynamic Layout Optimisation during Sketching
	Definition: Layout Design Task
	Objective Function
	Inferring the Design Task
	Dynamic Optimisation
	Filtering and Diversification of Results

	System Implementation
	Study 1: End-User Evaluation
	Optimisation Task
	Participants
	Apparatus, Procedure, and Experimental Design
	Results
	Selection Time
	Aesthetic Ratings

	Summary

	Study 2: Design Study with a Live System
	Study Design
	Results

	Discussion
	Summary
	Revisiting the Research Question
	Principles for Design-Time Placement
	Limitations and Next Steps

	Acknowledgements

	Improving Use-Time Placement on Graphical Layouts
	Introduction
	Research Question
	Familiarisation: Restructuring Graphical Interfaces using Visual Learning Models
	Overview: Four Familiarisation Principles

	Background
	Visual Search
	Layout Generation and Interface Restructuring
	Run-time Adaptation of Interfaces

	Modelling Familiarity
	Principle i: Frequency
	Principle ii: Serial Position Curve
	Principle iii: Visual Statistical Learning
	Principle iv: Visual Sampling Based on a Generative Cognitive Model

	Familiariser: System Overview
	Page Parsing
	Page Categorisation
	Usage History Updates
	Template Computation
	Target Page Restructuring
	Triggering Familiarisation

	Architecture and Implementation
	Logging User History
	Generating a Template
	Restructuring the Page

	Evaluation
	Study Tasks
	Apparatus
	Participants
	Method
	1. Learning Phase
	2. Test Phase

	Results

	Discussion
	Summary
	Revisiting the Research Question
	Principles for Use-Time Placement
	Limitations and Next Steps

	Acknowledgements

	II Facilitating Placement on Post-WIMP UIs
	Facilitating Placement of Interactive Electronics on Post-WIMP Interfaces
	Introduction
	Placing Electronics on Post-WIMP Interfaces
	Interactive Paper
	Research Question
	PaperPulse: Placing Electronic Elements onto Paper Interfaces

	Background
	Fabricating Electronic Circuits
	Design Tools for Sensors-Based Interactions

	PaperPulse: An Overview
	PaperPulse Essentials
	Walkthrough: A Diet Tracking Card

	PaperPulse Widgets
	Design Challenges
	Off-the-Shelf Widgets
	Paper-Membrane Widgets
	Pull-Chain Widgets
	Summary of PaperPulse Widgets

	Pulsation: Specifying Sensor Logic By Demonstration
	Architecture and Implementation
	Pulsation Interpreter
	Filtering Signal Noise
	Generating Electronic Circuits
	Generating Printable Pages

	Evaluation
	Beyond Paper: Smart Clothing and Home Interfaces
	Placement of Interactive Electronics on Smart Clothing
	Placement on Home Interfaces
	The Evolving Smart Home
	End-User Configuration of Home Interfaces
	End-User Logging of Interactions

	Discussion
	Summary
	Revisiting the Research Question
	Principles for Facilitating Placement of Electronics
	Limitations and Next Steps

	Acknowledgements

	Facilitating Placement of Input Controls Across Interfaces
	Introduction
	Research Question
	BinPut: An Input Technique for Post-WIMP Interfaces

	Background
	Post-WIMP Input Techniques
	Device-Independent Input and Input with Few Keys

	BinPut: Adapting Binary Search for Input
	Walkthrough: An Input Task
	Input Commands
	Searching the Input Space
	Traversing with Binary Search
	Switching to Linear Search

	Undo Mechanism

	Type-Independence with BinPut
	Number Entry
	Text Entry
	List Selection
	One-Dimensional Scrolling
	Multi-dimensional Pointing

	Device-Independence with BinPut
	Input Device Requirements
	Output Device Requirements
	Implementations

	Theoretical Evaluation of BinPut
	Number of Input Moves
	Input Task Time
	Cognition Time
	Motor Time

	Evaluation: Device- and Type- Independence of BinPut
	Study Conditions
	Apparatus
	Participants
	Procedure and Experimental Design
	Results
	Discussion

	Customising BinPut for Specific Scenarios
	Interleaving Binary and Linear Search
	Unistroke Gestures
	Weighted Input Sets

	Discussion
	Summary
	Revisiting the Research Question
	Principles for Placing Input Controls
	Limitations and Future Works

	III Closing
	Discussion
	Summary of Contributions
	Research Goals and Resulting Principles
	Limitations and Future Works

	Nederlandstalige Samenvatting

